- 相關(guān)推薦
幾何證明選講試題及參考答案
幾何證明是屬于宣講的一個(gè)知識(shí)點(diǎn),關(guān)于這些的是試題有哪些呢?下面就是學(xué)習(xí)啦小編給大家整理的幾何證明選講試題內(nèi)容,希望大家喜歡。
幾何證明試題
(1)四邊形BCDE的外接圓是不是連接四邊形中任意三點(diǎn)的三角形的外接圓?答案是肯定的!
(2)三角形的外接圓半徑與解三角形中的哪個(gè)定理聯(lián)系很緊密?
——正弦定理
正弦定理的表達(dá)形式: = = =2R,其中這里邊的R,就是三角形的.外接圓半徑。那么,我們只要找到三角形的一邊長(zhǎng)和該邊所對(duì)的角,就能將半徑求出,而不需做出圓心。
解題過(guò)程:在△ABC中,連接DE、CD,根據(jù)AE=4,AC=6易知 , .
則DE2 =AE2+AD2 所以DE=2 ,又在△ADC中,sin∠ACD= = =
所以在三角形DCE中, =2R=10 所以R=5 .
這種解題方法的掌握,是在有了扎實(shí)的基本功基礎(chǔ)上的巧妙聯(lián)想和合理推測(cè)證明,有利于學(xué)生知識(shí)體系的構(gòu)建和基礎(chǔ)知識(shí)的提升。
初中幾何輔助線的規(guī)律
線、角、相交線、平行線
規(guī)律1
如果平面上有n(n≥2)個(gè)點(diǎn),其中任何三點(diǎn)都不在同一直線上,那么每?jī)牲c(diǎn)畫(huà)一條直線,一共可以畫(huà)出n(n-1)條。
規(guī)律2
平面上的n條直線最多可把平面分成〔n(n+1)+1〕個(gè)部分。
規(guī)律3
如果一條直線上有n個(gè)點(diǎn),那么在這個(gè)圖形中共有線段的條數(shù)為n(n-1)條。
規(guī)律4
線段(或延長(zhǎng)線)上任一點(diǎn)分線段為兩段,這兩條線段的中點(diǎn)的距離等于線段長(zhǎng)的一半。
規(guī)律5
有公共端點(diǎn)的n條射線所構(gòu)成的交點(diǎn)的個(gè)數(shù)一共有n(n-1)個(gè)。
規(guī)律6
如果平面內(nèi)有n條直線都經(jīng)過(guò)同一點(diǎn),則可構(gòu)成小于平角的角共有2n(n-1)個(gè)。
規(guī)律7
如果平面內(nèi)有n條直線都經(jīng)過(guò)同一點(diǎn),則可構(gòu)成n(n-1)對(duì)對(duì)頂角。
規(guī)律8
平面上若有n(n≥3)個(gè)點(diǎn),任意三個(gè)點(diǎn)不在同一直線上,過(guò)任意三點(diǎn)作三角形一共可作出n(n-1)(n-2)個(gè)。
規(guī)律9
互為鄰補(bǔ)角的兩個(gè)角平分線所成的角的度數(shù)為90°。
規(guī)律10
平面上有n條直線相交,最多交點(diǎn)的`個(gè)數(shù)為n(n-1)個(gè)。
規(guī)律11
互為補(bǔ)角中較小角的余角等于這兩個(gè)互為補(bǔ)角的角的差的一半。
規(guī)律12
當(dāng)兩直線平行時(shí),同位角的角平分線互相平行,內(nèi)錯(cuò)角的角平分線互相平行,同旁內(nèi)角的角平分線互相垂直。
規(guī)律13
初二數(shù)學(xué)證明題目
1、如圖,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E.且BD>CE
,證明BD=EC+ED
.解答:證明:∵∠BAC=90°,CE⊥AE,BD⊥AE,
∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.
∴∠ABD=∠DAC.
又∵AB=AC,(
∴△ABD≌△CAE(AAS).
∴BD=AE,EC=AD.
∵AE=AD+DE,
∴BD=EC+ED.
2、△ABC是等要直角三角形。∠ACB=90°,AD是BC邊上的中線,過(guò)C做AD的垂線,交AB于點(diǎn)E,交AD于點(diǎn)F,求證∠ADC=∠BDE
解:作CH⊥AB于H交AD于P,
∵在Rt△ABC中AC=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°.
∴∠HCB=90°-∠CBA=45°=∠CBA.
又∵中點(diǎn)D,
∴CD=BD.
又∵CH⊥AB,
∴CH=AH=BH.
又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,
∴∠PAH=∠PCF.
又∵∠APH=∠CEH,
在△APH與△CEH中
∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,
∴△APH≌△CEH(ASA).
∴PH=EH,
又∵PC=CH-PH,BE=BH-HE,
∴CP=EB.
在△PDC與△EDB中
PC=EB,∠PCD=∠EBD,DC=DB,
∴△PDC≌△EDB(SAS).
∴∠ADC=∠BDE.
2
證明:作OE⊥AB于E,OF⊥AC于F,
∵∠3=∠4,
∴OE=OF. (問(wèn)題在這里。理由是什么埃我有點(diǎn)不懂)
∵∠1=∠2,
∴OB=OC.
∴Rt△OBE≌Rt△OCF(HL).
∴∠5=∠6.
∴∠1+∠5=∠2+∠6.
即∠ABC=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形
過(guò)點(diǎn)O作OD⊥AB于D
過(guò)點(diǎn)O作OE⊥AC于E
再證Rt△AOD≌ Rt△AOE(AAS)
得出OD=OE
就可以再證Rt△DOB≌ Rt△EOC(HL)
得出∠ABO=∠ACO
再因?yàn)?ang;OBC=∠OCB
得出∠ABC=∠ABC
得出等腰△ABC
【幾何證明選講試題及參考答案】相關(guān)文章:
高中幾何證明練習(xí)題及參考答案08-03
用綜合法證明試題及參考答案08-03
從古至今幾何證明定理08-03
關(guān)于幾何中證明垂直的技巧08-03
陜西中考語(yǔ)文試題及參考答案01-27
民法學(xué)試題及參考答案08-03
安全教育培訓(xùn)試題及參考答案03-24