高中化學(xué)選知識(shí)點(diǎn)總結(jié)
化學(xué)選修3篇一:【人教版】高中化學(xué)選修3知識(shí)點(diǎn)總結(jié)
第一章 原子結(jié)構(gòu)與性質(zhì)
一.原子結(jié)構(gòu)
1.能級(jí)與能層
2.原子軌道
3.原子核外電子排布規(guī)律 ⑴構(gòu)造原理:隨著核電荷數(shù)遞增,大多數(shù)元素的電中性基態(tài)原子的電子按右圖順序填入核外電子運(yùn)動(dòng)軌道(能級(jí)),叫做構(gòu)造原理。
能級(jí)交錯(cuò):由構(gòu)造原理可知,電子先進(jìn)入4s軌道,后進(jìn)入3d軌道,這種現(xiàn)象叫能級(jí)交錯(cuò)。
說(shuō)明:構(gòu)造原理并不是說(shuō)4s能級(jí)比3d能級(jí)能量低(實(shí)際上4s能級(jí)比3d能級(jí)能量高),而是指這樣順序填充電子可以使整個(gè)原子的能量最低。也就是說(shuō),整個(gè)原子的能量不能機(jī)械地看做是各電子所處軌道的能量之和。
(2)能量最低原理
現(xiàn)代物質(zhì)結(jié)構(gòu)理論證實(shí),原子的電子排布遵循構(gòu)造原理能使整個(gè)原子的能量處于最低狀態(tài),簡(jiǎn)稱能量最低原理。
構(gòu)造原理和能量最低原理是從整體角度考慮原子的能量高低,而不局限于某個(gè)能級(jí)。
。3)泡利(不相容)原理:基態(tài)多電子原子中,不可能同時(shí)存在4個(gè)量子數(shù)完全相同的電子。換言之,
一個(gè)軌道里最多只能容納兩個(gè)電子,且電旋方向相反(用“↑↓”表示),這個(gè)原理稱為泡利(Pauli)原理。
(4)洪特規(guī)則:當(dāng)電子排布在同一能級(jí)的不同軌道(能量相同)時(shí),總是優(yōu)先單獨(dú)占據(jù)一個(gè)軌道,而且自旋方向相同,這個(gè)規(guī)則叫洪特(Hund)規(guī)則。比如,p3的軌道式
為↑ ↑ ↑ 或↓ ↓ ↓ ↑↓ ↑
洪特規(guī)則特例:當(dāng)p、d、f軌道填充的電子數(shù)為全空、半充滿或全充滿時(shí),原子處于較穩(wěn)定的狀態(tài)。即p0、d0、f0、p3、d5、f7、p6、d10、f14時(shí),是較穩(wěn)定狀態(tài)。
前36號(hào)元素中,全空狀態(tài)的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充滿狀態(tài)的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充滿狀態(tài)的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。
4. 基態(tài)原子核外電子排布的表示方法
(1)電子排布式
①用數(shù)字在能級(jí)符號(hào)的右上角表明該能級(jí)上排布的電子數(shù),這就是電子排布式,例如K:1s22s22p63s23p64s1。
、跒榱吮苊怆娮优挪际綍(shū)寫(xiě)過(guò)于繁瑣,把內(nèi)層電子達(dá)到稀有氣體元素原子結(jié)構(gòu)的部分以相應(yīng)稀有氣體的元素符號(hào)外加方括號(hào)表示,例如K:[Ar]4s1。
(2)電子排布圖(軌道表示式)
每個(gè)方框或圓圈代表一個(gè)原子軌道,每個(gè)箭頭代表一個(gè)電子。
如基態(tài)硫原子的軌道表示式為
二.原子結(jié)構(gòu)與元素周期表
1.原子的電子構(gòu)型與周期的關(guān)系
(1)每周期第一種元素的最外層電子的排布式為ns1。每周期結(jié)尾元素的最外層電子排布式除He為1s2外,其余為ns2np6。He核外只有2個(gè)電子,只有1個(gè)s軌道,還未出現(xiàn)p軌道,所以第一周期結(jié)尾元素的電子排布跟其他周期不同。
(2)一個(gè)能級(jí)組最多所容納的電子數(shù)等于一個(gè)周期所包含的元素種類。但一個(gè)能級(jí)組不一定全部是能量相同的能級(jí),而是能量相近的能級(jí)。
2.元素周期表的分區(qū)
(1)根據(jù)核外電子排布
①分區(qū)
、诟鲄^(qū)元素化學(xué)性質(zhì)及原子最外層電子排布特點(diǎn)
、廴粢阎氐耐鈬娮优挪,可直接判斷該元素在周期表中的位置。如:某元素的外圍電子排布為4s24p4,由此可知,該元素位于p區(qū),為第四周期ⅥA族元素。即最大能層為其周期數(shù),最外層電子數(shù)為其族序數(shù),但應(yīng)注意過(guò)渡元素(副族與第Ⅷ族)的最大能層為其周期數(shù),外圍電子數(shù)應(yīng)為其縱列數(shù)而不是其族序數(shù)(鑭系、錒系除外)。
三.元素周期律
1.電離能、電負(fù)性
(1)電離能是指氣態(tài)原子或離子失去1個(gè)電子時(shí)所需要的最低能量,第一電離能是指電中性基態(tài)原子失去1個(gè)電子轉(zhuǎn)化為氣態(tài)基態(tài)正離子所需要的最低能量。第一電離能數(shù)值越小,原子越容易失去1個(gè)電子。在同一周期的元素中,堿金屬(或第ⅠA族)第一電離能最小,稀有氣體(或0族)第一電離能最大,從左到右總體呈現(xiàn)增大趨勢(shì)。同主族元素,從上到下,第一電離能逐漸減小。同一原子的第二電離能比第一電離能要大
。2)元素的電負(fù)性用來(lái)描述不同元素的原子對(duì)鍵合電子吸引力的大小。以氟的電負(fù)性為4.0,鋰的電負(fù)性為1.0作為相對(duì)標(biāo)準(zhǔn),得出了各元素的電負(fù)性。電負(fù)性的大小也可以作為判斷金屬性和非金屬性強(qiáng)弱的尺度,金屬的電負(fù)性一般小于1.8,非金屬的電負(fù)性一般大于1.8,而位于非金屬三角區(qū)邊界的“類金屬”的電負(fù)性在1.8左右。它們既有金屬性,又有非金屬性。
。3)電負(fù)性的應(yīng)用
、倥袛嘣氐慕饘傩院头墙饘傩约捌鋸(qiáng)弱
、诮饘俚碾娯(fù)性一般小于1.8,非金屬的電負(fù)性一般大于1.8,而位于非金屬三角區(qū)邊界的“類金屬”(如鍺、銻等)的電負(fù)性則在1.8左右,它們既有金屬性,又有非金屬性。
、劢饘僭氐碾娯(fù)性越小,金屬元素越活潑;非金屬元素的電負(fù)性越大,非金屬元素越活潑。 ④同周期自左到右,電負(fù)性逐漸增大,同主族自上而下,電負(fù)性逐漸減小。
2.原子結(jié)構(gòu)與元素性質(zhì)的遞變規(guī)律
3.對(duì)角線規(guī)則
在元素周期表中,某些主族元素與右下方的主族元素的有些性質(zhì)是相似的,如
第二章 分子結(jié)構(gòu)與性質(zhì)
課標(biāo)要求
1.了解共價(jià)鍵的主要類型?鍵和?鍵,能用鍵長(zhǎng)、鍵能和鍵角等說(shuō)明簡(jiǎn)單分子的某些性質(zhì)
2.了解雜化軌道理論及常見(jiàn)的雜化軌道類型(sp、sp2、sp3),能用價(jià)層電子對(duì)互斥理論或者雜化軌道理論推測(cè)常見(jiàn)的簡(jiǎn)單分子或離子的空間結(jié)構(gòu)。
3.了解簡(jiǎn)單配合物的成鍵情況。
4.了解化學(xué)鍵合分子間作用力的區(qū)別。
5.了解氫鍵的存在對(duì)物質(zhì)性質(zhì)的影響,能列舉含氫鍵的物質(zhì)。
要點(diǎn)精講
一.共價(jià)鍵
1.共價(jià)鍵的本質(zhì)及特征
共價(jià)鍵的本質(zhì)是在原子之間形成共用電子對(duì),其特征是具有飽和性和方向性。
2.共價(jià)鍵的類型
、侔闯涉I原子間共用電子對(duì)的數(shù)目分為單鍵、雙鍵、三鍵。
②按共用電子對(duì)是否偏移分為極性鍵、非極性鍵。
、郯丛榆壍赖闹丿B方式分為σ鍵和π鍵,前者的電子云具有軸對(duì)稱性,后者的電子云具有鏡像對(duì)稱性。
3.鍵參數(shù)
、冁I能:氣態(tài)基態(tài)原子形成1 mol化學(xué)鍵釋放的最低能量,鍵能越大,化學(xué)鍵越穩(wěn)定。
、阪I長(zhǎng):形成共價(jià)鍵的兩個(gè)原子之間的核間距,鍵長(zhǎng)越短,共價(jià)鍵越穩(wěn)定。
、坻I角:在原子數(shù)超過(guò)2的分子中,兩個(gè)共價(jià)鍵之間的夾角。
、苕I參數(shù)對(duì)分子性質(zhì)的影響
鍵長(zhǎng)越短,鍵能越大,分子越穩(wěn)定.
4.等電子原理[來(lái)源:學(xué)科網(wǎng)]
原子總數(shù)相同、價(jià)電子總數(shù)相同的分子具有相似的化學(xué)鍵特征,它們的許多性質(zhì)相近。
二.分子的立體構(gòu)型
1.分子構(gòu)型與雜化軌道理論
雜化軌道的要點(diǎn)
當(dāng)原子成鍵時(shí),原子的價(jià)電子軌道相互混雜,形成與原軌道數(shù)相等且能量相同的雜化軌道。雜化軌道數(shù)不同,軌道間的夾角不同,形成分子的空間形狀不同。
2分子構(gòu)型與價(jià)層電子對(duì)互斥模型
價(jià)層電子對(duì)互斥模型說(shuō)明的是價(jià)層電子對(duì)的空間構(gòu)型,而分子的空間構(gòu)型指的是成鍵電子對(duì)空間構(gòu)型,不包括孤對(duì)電子。
(1)當(dāng)中心原子無(wú)孤對(duì)電子時(shí),兩者的構(gòu)型一致;
(2)當(dāng)中心原子有孤對(duì)電子時(shí),兩者的構(gòu)型不一致。
3.配位化合物
。1)配位鍵與極性鍵、非極性鍵的比較
化學(xué)選修3篇二:高中化學(xué)選修3知識(shí)點(diǎn)全部歸納
高中化學(xué)選修3知識(shí)點(diǎn)全部歸納(物質(zhì)的結(jié)構(gòu)與性質(zhì))
第一章 原子結(jié)構(gòu)與性質(zhì).
一、認(rèn)識(shí)原子核外電子運(yùn)動(dòng)狀態(tài),了解電子云、電子層(能層)、原子軌道(能級(jí))的含義.
1.電子云:用小黑點(diǎn)的疏密來(lái)描述電子在原子核外空間出現(xiàn)的機(jī)會(huì)大小所得的圖形叫電子云圖.離核越近,電子出現(xiàn)的機(jī)會(huì)大,電子云密度越大;離核越遠(yuǎn),電子出現(xiàn)的機(jī)會(huì)小,電子云密度越小.
電子層(能層):根據(jù)電子的能量差異和主要運(yùn)動(dòng)區(qū)域的不同,核外電子分別處于不同的電子層.原子由里向外對(duì)應(yīng)的電子層符號(hào)分別為K、L、M、N、O、P、Q.
原子軌道(能級(jí)即亞層):處于同一電子層的原子核外電子,也可以在不同類型的原子軌道上運(yùn)動(dòng),分別用s、p、d、f表示不同形狀的軌道,s軌道呈球形、p軌道呈紡錘形,d軌道和f軌道較復(fù)雜.各軌道的伸展方向個(gè)數(shù)依次為1、3、5、7. 2.(構(gòu)造原理)
了解多電子原子中核外電子分層排布遵循的原理,能用電子排布式表示1~36號(hào)元素原子核外電子的排布.
(1).原子核外電子的運(yùn)動(dòng)特征可以用電子層、原子軌道(亞層)和自旋方向來(lái)進(jìn)行描述.在含有多個(gè)核外電子的原子中,不存在運(yùn)動(dòng)狀態(tài)完全相同的兩個(gè)電子. (2).原子核外電子排布原理.
、.能量最低原理:電子先占據(jù)能量低的軌道,再依次進(jìn)入能量高的軌道. ②.泡利不相容原理:每個(gè)軌道最多容納兩個(gè)自旋狀態(tài)不同的電子.
、.洪特規(guī)則:在能量相同的軌道上排布時(shí),電子盡可能分占不同的軌道,且自旋狀態(tài)相同. 洪特規(guī)則的特例:在等價(jià)軌道的全充滿(p、d、f)、半充滿(p、d、f)、全空時(shí)(p、0051101d、f)的狀態(tài),具有較低的能量和較大的穩(wěn)定性.如24Cr [Ar]3d4s、29Cu [Ar]3d4s. (3).掌握能級(jí)交錯(cuò)圖和1-36號(hào)元素的核外電子排布式.
、俑鶕(jù)構(gòu)造原理,基態(tài)原子核外電子的排布遵循圖⑴箭頭所示的順序。
②根據(jù)構(gòu)造原理,可以將各能級(jí)按能量的差異分成能級(jí)組如圖⑵所示,由下而上表示七個(gè)能級(jí)組,其能量依次升高;在同一能級(jí)組內(nèi),從左到右能量依次升高;鶓B(tài)原子核外電子的排布按能量由低到高的順序依次排布。 3.元素電離能和元素電負(fù)性
第一電離能:氣態(tài)電中性基態(tài)原子失去1個(gè)電子,轉(zhuǎn)化為氣態(tài)基態(tài)正離子所需要的能量叫做第一電離能。常用符號(hào)I1表示,單位為kJ/mol。 (1).原子核外電子排布的周期性.
隨著原子序數(shù)的增加,元素原子的外圍電子排布呈現(xiàn)周期性的變化:每隔一定數(shù)目的元素,元
126
素原子的外圍電子排布重復(fù)出現(xiàn)從ns到nsnp的周期性變化. (2).元素第一電離能的周期性變化.
隨著原子序數(shù)的遞增,元素的第一電離能呈周期性變化:
★同周期從左到右,第一電離能有逐漸增大的趨勢(shì),稀有氣體的第一電離能最大,堿金屬的第一電離能最;
6
10
14
3
5
7
★同主族從上到下,第一電離能有逐漸減小的趨勢(shì). 說(shuō)明:
、偻芷谠兀瑥淖笸业谝浑婋x能呈增大趨勢(shì)。電子亞層結(jié)構(gòu)為全滿、半滿時(shí)較相鄰元素要大即第 ⅡA 族、第 ⅤA 族元素的第一電離能分別大于同周期相鄰元素。Be、N、Mg、P ②.元素第一電離能的運(yùn)用:
a.電離能是原子核外電子分層排布的實(shí)驗(yàn)驗(yàn)證.
b.用來(lái)比較元素的金屬性的強(qiáng)弱.I1越小,金屬性越強(qiáng),表征原子失電子能力強(qiáng)弱. (3).元素電負(fù)性的周期性變化.
元素的電負(fù)性:元素的原子在分子中吸引電子對(duì)的能力叫做該元素的電負(fù)性。
隨著原子序數(shù)的遞增,元素的電負(fù)性呈周期性變化:同周期從左到右,主族元素電負(fù)性逐漸增大;同一主族從上到下,元素電負(fù)性呈現(xiàn)減小的趨勢(shì). 電負(fù)性的運(yùn)用:
a.確定元素類型(一般>1.8,非金屬元素;<1.8,金屬元素).>1.7,離子鍵;<1.7,共價(jià)鍵). c.判斷元素價(jià)態(tài)正負(fù)(電負(fù)性大的為負(fù)價(jià),小的為正價(jià)).
d.電負(fù)性是判斷金屬性和非金屬性強(qiáng)弱的重要參數(shù)(表征原子得電子能力強(qiáng)弱). 例8.下列各組元素,按原子半徑依次減小,元素第一電離能逐漸升高的順序排列的是A.K、Na、LiB.N、O、C C.Cl、S、PD.Al、Mg、Na 例9.已知X、Y元素同周期,且電負(fù)性X>Y,下列說(shuō)法錯(cuò)誤的是 A.X與Y形成化合物時(shí),X顯負(fù)價(jià),Y顯正價(jià) B.第一電離能可能Y小于X
C.最高價(jià)含氧酸的酸性:X對(duì)應(yīng)的酸性弱于Y對(duì)應(yīng)的酸性 D.氣態(tài)氫化物的穩(wěn)定性:HmY小于HmX
二.化學(xué)鍵與物質(zhì)的性質(zhì). 內(nèi)容:離子鍵――離子晶體
1.理解離子鍵的含義,能說(shuō)明離子鍵的形成.了解NaCl型和CsCl型離子晶體的結(jié)構(gòu)特征,能用晶格能解釋離子化合物的物理性質(zhì).
(1).化學(xué)鍵:相鄰原子之間強(qiáng)烈的相互作用.化學(xué)鍵包括離子鍵、共價(jià)鍵和金屬鍵. (2).離子鍵:陰、陽(yáng)離子通過(guò)靜電作用形成的化學(xué)鍵.
離子鍵強(qiáng)弱的判斷:離子半徑越小,離子所帶電荷越多,離子鍵越強(qiáng),離子晶體的熔沸點(diǎn)越高.
離子鍵的強(qiáng)弱可以用晶格能的大小來(lái)衡量,晶格能是指拆開(kāi)1mol離子晶體使之形成氣態(tài)陰離子和陽(yáng)離子所吸收的能量.晶格能越大,離子晶體的熔點(diǎn)越高、硬度越大. 離子晶體:通過(guò)離子鍵作用形成的晶體.
典型的離子晶體結(jié)構(gòu):NaCl型和CsCl型.氯化鈉晶體中,每個(gè)鈉離子周?chē)?個(gè)氯離子,每個(gè)氯離子周?chē)?個(gè)鈉離子,每個(gè)氯化鈉晶胞中含有4個(gè)鈉離子和4個(gè)氯離子;氯化銫晶
體中,每個(gè)銫離子周?chē)?個(gè)氯離子,每個(gè)氯離子周?chē)?個(gè)銫離子,每個(gè)氯化銫晶胞中含有1個(gè)銫離子和1個(gè)氯離子.
(3).晶胞中粒子數(shù)的計(jì)算方法--均攤法.
2.了解共價(jià)鍵的主要類型σ鍵和π鍵,能用鍵能、鍵長(zhǎng)、鍵角等數(shù)據(jù)說(shuō)明簡(jiǎn)單分子的某些性質(zhì)(對(duì)σ鍵和π鍵之間相對(duì)強(qiáng)弱的比較不作要求).
(1).共價(jià)鍵的分類和判斷:σ鍵(“頭碰頭”重疊)和π鍵(“肩碰肩”重疊)、極性鍵和非極性鍵,還有一類特殊的共價(jià)鍵-配位鍵. (2).共價(jià)鍵三參數(shù).
共價(jià)鍵的鍵能與化學(xué)反應(yīng)熱的關(guān)系:反應(yīng)熱= 所有反應(yīng)物鍵能總和-所有生成物鍵能總和. 3.了解極性鍵和非極性鍵,了解極性分子和非極性分子及其性質(zhì)的差異. (1)共價(jià)鍵:原子間通過(guò)共用電子對(duì)形成的化學(xué)鍵. (2)鍵的極性:
極性鍵:不同種原子之間形成的共價(jià)鍵,成鍵原子吸引電子的能力不同,共用電子對(duì)發(fā)生偏移.
非極性鍵:同種原子之間形成的共價(jià)鍵,成鍵原子吸引電子的能力相同,共用電子對(duì)不發(fā)生偏移.
(3)分子的極性:
、贅O性分子:正電荷中心和負(fù)電荷中心不相重合的分子. 非極性分子:正電荷中心和負(fù)電荷中心相重合的分子.
②分子極性的判斷:分子的極性由共價(jià)鍵的極性及分子的空間構(gòu)型兩個(gè)方面共同決定.非極性分子和極性分子的比較
4.分子的空間立體結(jié)構(gòu)(記。
常見(jiàn)分子的類型與形狀比較
5.了解原子晶體的特征,能描述金剛石、二氧化硅等原子晶體的結(jié)構(gòu)與性質(zhì)的關(guān)系. (1).原子晶體:所有原子間通過(guò)共價(jià)鍵結(jié)合成的晶體或相鄰原子間以共價(jià)鍵相結(jié)合而形成空間立體網(wǎng)狀結(jié)構(gòu)的晶體.
(2).典型的原子晶體有金剛石(C)、晶體硅(Si)、二氧化硅(SiO2).
金剛石是正四面體的空間網(wǎng)狀結(jié)構(gòu),最小的碳環(huán)中有6個(gè)碳原子,每個(gè)碳原子與周?chē)膫(gè)碳原子形成四個(gè)共價(jià)鍵;晶體硅的結(jié)構(gòu)與金剛石相似;二氧化硅晶體是空間網(wǎng)狀結(jié)構(gòu),最小的環(huán)中有6個(gè)硅原子和6個(gè)氧原子,每個(gè)硅原子與4個(gè)氧原子成鍵,每個(gè)氧原子與2個(gè)硅原子成鍵.
(3).共價(jià)鍵強(qiáng)弱和原子晶體熔沸點(diǎn)大小的判斷:原子半徑越小,形成共價(jià)鍵的鍵長(zhǎng)越短,共價(jià)鍵的鍵能越大,其晶體熔沸點(diǎn)越高.如熔點(diǎn):金剛石>碳化硅>晶體硅.
6.理解金屬鍵的含義,能用金屬鍵的自由電子理論解釋金屬的一些物理性質(zhì).知道金屬晶體的基本堆積方式,了解常見(jiàn)金屬晶體的晶胞結(jié)構(gòu)(晶體內(nèi)部空隙的識(shí)別、與晶胞的邊長(zhǎng)等晶體結(jié)構(gòu)參數(shù)相關(guān)的計(jì)算不作要求).
(1).金屬鍵:金屬離子和自由電子之間強(qiáng)烈的相互作用. 請(qǐng)運(yùn)用自由電子理論解釋金屬晶體的導(dǎo)電性、導(dǎo)熱性和延展性.
(2)①金屬晶體:通過(guò)金屬鍵作用形成的晶體.
②金屬鍵的強(qiáng)弱和金屬晶體熔沸點(diǎn)的變化規(guī)律:陽(yáng)離子所帶電荷越多、半徑越小,金屬鍵越強(qiáng),熔沸點(diǎn)越高.如熔點(diǎn):Na
(1)配位鍵:一個(gè)原子提供一對(duì)電子與另一個(gè)接受電子的原子形成的共價(jià)鍵.即成鍵的兩個(gè)原子一方提供孤對(duì)電子,一方提供空軌道而形成的共價(jià)鍵.
(2)①.配合物:由提供孤電子對(duì)的配位體與接受孤電子對(duì)的中心原子(或離子)以配位鍵形成的化合物稱配合物,又稱絡(luò)合物.
②形成條件:a.中心原子(或離子)必須存在空軌道. b.配位體具有提供孤電子對(duì)的原子. ③配合物的組成.
、芘浜衔锏男再|(zhì):配合物具有一定的穩(wěn)定性.配合物中配位鍵越強(qiáng),配合物越穩(wěn)定.當(dāng)作為中心原子的金屬離子相同時(shí),配合物的穩(wěn)定性與配體的性質(zhì)有關(guān).
三.分子間作用力與物質(zhì)的性質(zhì).
1.知道分子間作用力的含義,了解化學(xué)鍵和分子間作用力的區(qū)別.
分子間作用力:把分子聚集在一起的作用力.分子間作用力是一種靜電作用,比化學(xué)鍵弱得多,包括范德華力和氫鍵.
范德華力一般沒(méi)有飽和性和方向性,而氫鍵則有飽和性和方向性.
2.知道分子晶體的`含義,了解分子間作用力的大小對(duì)物質(zhì)某些物理性質(zhì)的影響.
(1).分子晶體:分子間以分子間作用力(范德華力、氫鍵)相結(jié)合的晶體.典型的有冰、干冰. (2).分子間作用力強(qiáng)弱和分子晶體熔沸點(diǎn)大小的判斷:組成和結(jié)構(gòu)相似的物質(zhì),相對(duì)分子質(zhì)量越大,分子間作用力越大,克服分子間引力使物質(zhì)熔化和氣化就需要更多的能量,熔、沸點(diǎn)越高.但存在氫鍵時(shí)分子晶體的熔沸點(diǎn)往往反常地高.
3.了解氫鍵的存在對(duì)物質(zhì)性質(zhì)的影響(對(duì)氫鍵相對(duì)強(qiáng)弱的比較不作要求).
NH3、H2O、HF中由于存在氫鍵,使得它們的沸點(diǎn)比同族其它元素氫化物的沸點(diǎn)反常地高. 影響物質(zhì)的性質(zhì)方面:增大溶沸點(diǎn),增大溶解性 表示方法:X—H??Y(N O F) 一般都是氫化物中存在.
化學(xué)選修3篇三:化學(xué)選修三知識(shí)點(diǎn)~~
高中化學(xué)選修3知識(shí)點(diǎn)全部歸納(物質(zhì)的結(jié)構(gòu)與性質(zhì))
▼第一章 原子結(jié)構(gòu)與性質(zhì).
一、認(rèn)識(shí)原子核外電子運(yùn)動(dòng)狀態(tài),了解電子云、電子層(能層)、原子軌道(能級(jí))的含義.
1
(1).原子核外電子排布的周期性.
隨著原子序數(shù)的增加,元素原子的外圍電子排布呈現(xiàn)周期性的變化:每隔一定數(shù)目的元素,元素原子的外圍電子排布重復(fù)出現(xiàn)從ns1到ns2np6的周期性變化. (2).元素第一電離能的周期性變化.
隨著原子序數(shù)的遞增,元素的第一電離能呈周期性變化:
★同周期從左到右,第一電離能有逐漸增大的趨勢(shì),稀有氣體的第一電離能最大,堿金屬的第一電離能最。 ★同主族從上到下,第一電離能有逐漸減小的趨勢(shì). 說(shuō)明:
、偻芷谠,從左往右第一電離能呈增大趨勢(shì)。電子亞層結(jié)構(gòu)為全滿、半滿時(shí)較相鄰元素要大即第 ⅡA 族、第 ⅤA 族元素的第一電離能分別大于同周期相鄰元素。Be、N、Mg、P ②.元素第一電離能的運(yùn)用:
a.電離能是原子核外電子分層排布的實(shí)驗(yàn)驗(yàn)證.
b.用來(lái)比較元素的金屬性的強(qiáng)弱.I1越小,金屬性越強(qiáng),表征原子失電子能力強(qiáng)弱. (3).元素電負(fù)性的周期性變化.
元素的電負(fù)性:元素的原子在分子中吸引電子對(duì)的能力叫做該元素的電負(fù)性。
隨著原子序數(shù)的遞增,元素的電負(fù)性呈周期性變化:同周期從左到右,主族元素電負(fù)性逐漸增大;同一主族從上到下,元素電負(fù)性呈現(xiàn)減小的趨勢(shì). 電負(fù)性的運(yùn)用:
a.確定元素類型(一般>1.8,非金屬元素;<1.8,金屬元素).>1.7,離子鍵;<1.7,共價(jià)鍵). c.判斷元素價(jià)態(tài)正負(fù)(電負(fù)性大的為負(fù)價(jià),小的為正價(jià)).
d.電負(fù)性是判斷金屬性和非金屬性強(qiáng)弱的重要參數(shù)(表征原子得電子能力強(qiáng)弱). 例8.下列各組元素,按原子半徑依次減小,元素第一電離能逐漸升高的順序排列的是A.K、Na、LiB.N、O、C C.Cl、S、PD.Al、Mg、Na 例9.已知X、Y元素同周期,且電負(fù)性X>Y,下列說(shuō)法錯(cuò)誤的是 A.X與Y形成化合物時(shí),X顯負(fù)價(jià),Y顯正價(jià) B.第一電離能可能Y小于X
C.最高價(jià)含氧酸的酸性:X對(duì)應(yīng)的酸性弱于Y對(duì)應(yīng)的酸性 D.氣態(tài)氫化物的穩(wěn)定性:HmY小于HmX
二.化學(xué)鍵與物質(zhì)的性質(zhì). 內(nèi)容:離子鍵――離子晶體
1.理解離子鍵的含義,能說(shuō)明離子鍵的形成.了解NaCl型和CsCl型離子晶體的結(jié)構(gòu)特征,能用晶格能解釋離子化合物的物理性質(zhì).
(1).化學(xué)鍵:相鄰原子之間強(qiáng)烈的相互作用.化學(xué)鍵包括離子鍵、共價(jià)鍵和金屬鍵. (2).離子鍵:陰、陽(yáng)離子通過(guò)靜電作用形成的化學(xué)鍵.
離子鍵強(qiáng)弱的判斷:離子半徑越小,離子所帶電荷越多,離子鍵越強(qiáng),離子晶體的熔沸點(diǎn)越高.
離子鍵的強(qiáng)弱可以用晶格能的大小來(lái)衡量,晶格能是指拆開(kāi)1mol離子晶體使之形成氣態(tài)陰離子和陽(yáng)離子所吸收的能量.晶格能越大,離子晶體的熔點(diǎn)越高、硬度越大. 離子晶體:通過(guò)離子鍵作用形成的晶體.
典型的離子晶體結(jié)構(gòu):NaCl型和CsCl型.氯化鈉晶體中,每個(gè)鈉離子周?chē)?個(gè)氯離子,每個(gè)氯離子周?chē)?個(gè)鈉離子,每個(gè)氯化鈉晶胞中含有4個(gè)鈉離子和4個(gè)氯離子;氯化銫晶體中,每個(gè)銫離子周?chē)?個(gè)氯離子,每個(gè)氯離子周?chē)?個(gè)銫離子,每個(gè)氯化銫晶胞中含有1個(gè)銫離子和1個(gè)氯離子.
(3).晶胞中粒子數(shù)的計(jì)算方法--均攤法.
2.了解共價(jià)鍵的主要類型σ鍵和π鍵,能用鍵能、鍵長(zhǎng)、鍵角等數(shù)據(jù)說(shuō)明簡(jiǎn)單分子的某些性質(zhì)(對(duì)σ鍵和π鍵之間相對(duì)強(qiáng)弱的比較不作要求).
(1).共價(jià)鍵的分類和判斷:σ鍵(“頭碰頭”重疊)和π鍵(“肩碰肩”重疊)、極性鍵和非極性鍵,還有一類特殊的共價(jià)鍵-配位鍵.
(2).共價(jià)鍵三參數(shù).
共價(jià)鍵的鍵能與化學(xué)反應(yīng)熱的關(guān)系:反應(yīng)熱= 所有反應(yīng)物鍵能總和-所有生成物鍵能總和. 3.了解極性鍵和非極性鍵,了解極性分子和非極性分子及其性質(zhì)的差異. (1)共價(jià)鍵:原子間通過(guò)共用電子對(duì)形成的化學(xué)鍵.
(2)鍵的極性:
極性鍵:不同種原子之間形成的共價(jià)鍵,成鍵原子吸引電子的能力不同,共用電子對(duì)發(fā)生偏移. 非極性鍵:同種原子之間形成的共價(jià)鍵,成鍵原子吸引電子的能力相同,共用電子對(duì)不發(fā)生偏移. (3)分子的極性:
①極性分子:正電荷中心和負(fù)電荷中心不相重合的分子. 非極性分子:正電荷中心和負(fù)電荷中心相重合的分子.
、诜肿訕O性的判斷:分子的極性由共價(jià)鍵的極性及分子的空間構(gòu)型兩個(gè)方面共同決定.非極性分子和極性分子的比較
4.分子的空間立體結(jié)構(gòu)(記住) 常見(jiàn)分子的類型與形狀比較
5.了解原子晶體的特征,能描述金剛石、二氧化硅等原子晶體的結(jié)構(gòu)與性質(zhì)的關(guān)系.
(1).原子晶體:所有原子間通過(guò)共價(jià)鍵結(jié)合成的晶體或相鄰原子間以共價(jià)鍵相結(jié)合而形成空間立體網(wǎng)狀結(jié)構(gòu)的晶體. (2).典型的原子晶體有金剛石(C)、晶體硅(Si)、二氧化硅(SiO2).
金剛石是正四面體的空間網(wǎng)狀結(jié)構(gòu),最小的碳環(huán)中有6個(gè)碳原子,每個(gè)碳原子與周?chē)膫(gè)碳原子形成四個(gè)共價(jià)鍵;晶體硅的結(jié)構(gòu)與金剛石相似;二氧化硅晶體是空間網(wǎng)狀結(jié)構(gòu),最小的環(huán)中有6個(gè)硅原子和6個(gè)氧原子,每個(gè)硅原子與4個(gè)氧原子成鍵,每個(gè)氧原子與2個(gè)硅原子成鍵.
(3).共價(jià)鍵強(qiáng)弱和原子晶體熔沸點(diǎn)大小的判斷:原子半徑越小,形成共價(jià)鍵的鍵長(zhǎng)越短,共價(jià)鍵的鍵能越大,其晶體熔沸點(diǎn)越高.如熔點(diǎn):金剛石>碳化硅>晶體硅.
6.理解金屬鍵的含義,能用金屬鍵的自由電子理論解釋金屬的一些物理性質(zhì).知道金屬晶體的基本堆積方式,了解常見(jiàn)金屬晶體的晶胞結(jié)構(gòu)(晶體內(nèi)部空隙的識(shí)別、與晶胞的邊長(zhǎng)等晶體結(jié)構(gòu)參數(shù)相關(guān)的計(jì)算不作要求). (1).金屬鍵:金屬離子和自由電子之間強(qiáng)烈的相互作用.
請(qǐng)運(yùn)用自由電子理論解釋金屬晶體的導(dǎo)電性、導(dǎo)熱性和延展性.
(2)①金屬晶體:通過(guò)金屬鍵作用形成的晶體.
、诮饘冁I的強(qiáng)弱和金屬晶體熔沸點(diǎn)的變化規(guī)律:陽(yáng)離子所帶電荷越多、半徑越小,金屬鍵越強(qiáng),熔沸點(diǎn)越高.如熔點(diǎn):Na
7.了解簡(jiǎn)單配合物的成鍵情況(配合物的空間構(gòu)型和中心原子的雜化類型不作要求). (1)配位鍵:一個(gè)原子提供一對(duì)電子與另一個(gè)接受電子的原子形成的共價(jià)鍵.即成鍵的兩個(gè)原子一方提供孤對(duì)電子,一方提供空軌道而形成的共價(jià)鍵.
(2)①.配合物:由提供孤電子對(duì)的配位體與接受孤電子對(duì)的中心原子(或離子)以配位鍵形成的化合物稱配合物,又稱絡(luò)合物.
、谛纬蓷l件:a.中心原子(或離子)必須存在空軌道. b.配位體具有提供孤電子對(duì)的原子. ③配合物的組成.
、芘浜衔锏男再|(zhì):配合物具有一定的穩(wěn)定性.配合物中配位鍵越強(qiáng),配合物越穩(wěn)定.當(dāng)作為中心原子的金屬離子相同時(shí),配合物的穩(wěn)定性與配體的性質(zhì)有關(guān).
三.分子間作用力與物質(zhì)的性質(zhì).
1.知道分子間作用力的含義,了解化學(xué)鍵和分子間作用力的區(qū)別.
分子間作用力:把分子聚集在一起的作用力.分子間作用力是一種靜電作用,比化學(xué)鍵弱得多,包括范德華力和氫鍵. 范德華力一般沒(méi)有飽和性和方向性,而氫鍵則有飽和性和方向性.
2.知道分子晶體的含義,了解分子間作用力的大小對(duì)物質(zhì)某些物理性質(zhì)的影響.
(1).分子晶體:分子間以分子間作用力(范德華力、氫鍵)相結(jié)合的晶體.典型的有冰、干冰.
(2).分子間作用力強(qiáng)弱和分子晶體熔沸點(diǎn)大小的判斷:組成和結(jié)構(gòu)相似的物質(zhì),相對(duì)分子質(zhì)量越大,分子間作用力越大,克服分子間引力使物質(zhì)熔化和氣化就需要更多的能量,熔、沸點(diǎn)越高.但存在氫鍵時(shí)分子晶體的熔沸點(diǎn)往往反常地高.
3.了解氫鍵的存在對(duì)物質(zhì)性質(zhì)的影響(對(duì)氫鍵相對(duì)強(qiáng)弱的比較不作要求).
NH3、H2O、HF中由于存在氫鍵,使得它們的沸點(diǎn)比同族其它元素氫化物的沸點(diǎn)反常地高. 影響物質(zhì)的性質(zhì)方面:增大溶沸點(diǎn),增大溶解性 表示方法:X—H……Y(N O F) 一般都是氫化物中存在.
4.了解分子晶體與原子晶體、離子晶體、金屬晶體的結(jié)構(gòu)微粒、微粒間作用力的區(qū)別.
四、幾種比較
1、離子鍵、共價(jià)鍵和金屬鍵的比較
2、非極性鍵和極性鍵的比較
3.物質(zhì)溶沸點(diǎn)的比較(重點(diǎn))
。1)不同類晶體:一般情況下,原子晶體>離子晶體>分子晶體
。2)同種類型晶體:構(gòu)成晶體質(zhì)點(diǎn)間的作用大,則熔沸點(diǎn)高,反之則小。 ①離子晶體:離子所帶的電荷數(shù)越高,離子半徑越小,則其熔沸點(diǎn)就越高。 ②分子晶體:對(duì)于同類分子晶體,式量越大,則熔沸點(diǎn)越高。 ③原子晶體:鍵長(zhǎng)越小、鍵能越大,則熔沸點(diǎn)越高。 (3)常溫常壓下?tīng)顟B(tài) ①熔點(diǎn):固態(tài)物質(zhì)>液態(tài)物質(zhì) ②沸點(diǎn):液態(tài)物質(zhì)>氣態(tài)物質(zhì)
高考化學(xué)中的120個(gè)關(guān)鍵知識(shí)點(diǎn)
【高中化學(xué)選知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
總結(jié)高中化學(xué)知識(shí)點(diǎn)02-12
高中化學(xué)知識(shí)點(diǎn)總結(jié)07-20
高中化學(xué)ph知識(shí)點(diǎn)總結(jié)02-03
高中化學(xué)苯知識(shí)點(diǎn)總結(jié)08-08
高中化學(xué)實(shí)驗(yàn)知識(shí)點(diǎn)總結(jié)11-24
精選部分高中化學(xué)知識(shí)點(diǎn)總結(jié)11-19
高中化學(xué)重要知識(shí)點(diǎn)總結(jié)11-06