- 《消元-解二元一次方程組》教案 推薦度:
- 代入法解二元一次方程組公開(kāi)課教案 推薦度:
- 相關(guān)推薦
解二元一次方程組教案
在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,總歸要編寫(xiě)教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那么應(yīng)當(dāng)如何寫(xiě)教案呢?以下是小編幫大家整理的解二元一次方程組教案,僅供參考,歡迎大家閱讀。
解二元一次方程組教案 篇1
教學(xué)目標(biāo):
1.會(huì)用加減消元法解二元一次方程組.
2.能根據(jù)方程組的特點(diǎn),適當(dāng)選用代入消元法和加減消元法解二元一次方程組.
3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過(guò)程,體會(huì)解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.
教學(xué)重點(diǎn):
加減消元法的理解與掌握
教學(xué)難點(diǎn):
加減消元法的靈活運(yùn)用
教學(xué)方法:
引導(dǎo)探索法,學(xué)生討論交流
教學(xué)過(guò)程:
一、情境創(chuàng)設(shè)
買(mǎi)3瓶蘋(píng)果汁和2瓶橙汁共需要23元,買(mǎi)5瓶蘋(píng)果汁和2瓶橙汁共需33元,每瓶蘋(píng)果汁和每瓶橙汁售價(jià)各是多少?
設(shè)蘋(píng)果汁、橙汁單價(jià)為x元,y元.
我們可以列出方程3x+2y=23
5x+2y=33
問(wèn):如何解這個(gè)方程組?
二、探索活動(dòng)
活動(dòng)一:
1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?
2、這些方法與代入消元法有何異同?
3、這個(gè)方程組有何特點(diǎn)?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解這個(gè)方程得:y=4
把y=4代入③式
則
所以原方程組的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解這個(gè)方程得:x=5
把x=5代入①式,
3×5+2y=23
解這個(gè)方程得y=4
所以原方程組的解是x=5
y=4
把方程組的`兩個(gè)方程(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(eliminationbyadditionorsubtraction),簡(jiǎn)稱(chēng)加減法.
三、例題教學(xué):
例1.解方程組x+2y=1①
3x-2y=5②
解:①+②得,4x=6
將代入①,得
解這個(gè)方程得:
所以原方程組的解是
鞏固練習(xí)(一):練一練1.(1)
例2.解方程組5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
、凇3,得
4x-6y=-10④
③—④,得:
11x=22
解這個(gè)方程得x=2
將x=2代入①,得
5×2-2y=4
解這個(gè)方程得:y=3
所以原方程組的解是x=2
y=3
鞏固練習(xí)(二):練一練1.(2)(3)(4)2.
四、思維拓展:
解方程組:
五、小結(jié):
1、掌握加減消元法解二元一次方程組
2、靈活選用代入消元法和加減消元法解二元一次方程組
解二元一次方程組教案 篇2
教學(xué)目的
1.使學(xué)生了解二元一次方程,二元一次方程組的概念。
2.使學(xué)生了解二元一次方程;二元一次方程組的解的含義,會(huì)檢驗(yàn)一對(duì)數(shù)是不是它們的解。
3.通過(guò)引例的教學(xué),使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中的等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性。
重點(diǎn):
了解二元一次方程、二元一次方程組以及二元一次方程組的解的含
難點(diǎn):
了解二元一次方程組的解的含義。
導(dǎo)學(xué)提綱:
1.什么叫一元一次方程?什么叫一元一次方程的解?怎樣檢驗(yàn)一個(gè)數(shù)是否是這個(gè)方程的解?
2.閱讀教材問(wèn)題1思考下列問(wèn)題
、.能否用我們已經(jīng)學(xué)過(guò)的知識(shí)來(lái)解決這個(gè)問(wèn)題?
用算術(shù)法解答
用一元一次方程解答
解后反思:既然是求兩個(gè)未知量,那么能不能同時(shí)設(shè)兩個(gè)未知數(shù)?
、.此問(wèn)題中有兩個(gè)問(wèn)題如果分別設(shè)為x、y,怎樣列式呢?(完成教材中的表格)
、.對(duì)于方程x十y=73x+y=17請(qǐng)思考下列問(wèn)題
、偎鼈兪且辉淮畏匠虇?
、谶@兩個(gè)方程有沒(méi)有共同特點(diǎn)/若有,有河共同特點(diǎn)?
③類(lèi)比一元一次方程的概念,總結(jié)二元一次方程的概念
3.從教材中找出二元一次方程和二元一次方程組的概念(結(jié)合一元一次方程,二元一次方程對(duì)“元”和“次”作進(jìn)一步的解釋)
注意二元一次方程組的書(shū)寫(xiě)方式,方程組中的各方程中,同一個(gè)字母必須代表同一個(gè)量
4.與是否滿(mǎn)足方程①與是否滿(mǎn)足方程②類(lèi)比一元一次方程的解總結(jié)二元一次方程組的解的概念
注意:(1)未知數(shù)的值必須同時(shí)滿(mǎn)足兩個(gè)方程時(shí),才是方程組的'解.若取,時(shí),它們能滿(mǎn)足方程①,但不滿(mǎn)足方程②,所以它們不是方程組的解.
(2)二元一次方程組的解是一對(duì)數(shù),而不是一個(gè)數(shù),所以必須把與合起來(lái),才是方程組的解.
5.思考討論在方程組①②③④
、茛拗,屬于二元一次方程組的有
達(dá)標(biāo)檢測(cè):
1.根據(jù)下列語(yǔ)句,分別設(shè)適當(dāng)?shù)奈粗獢?shù),列出二元一次方程或方程組:
(1)甲數(shù)的比乙數(shù)的2倍少7:_____________________________;
(2)摩托車(chē)的時(shí)速是貨車(chē)的倍,它們的速度之和是200千米/時(shí):________;
(3)某種時(shí)裝的價(jià)格是某種皮裝的價(jià)格的1.4倍,5件皮裝比3件時(shí)裝貴700元:______________________________.
2.下列方程是二元一次方程的是()
A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2
3.下列不是二元一次方程組的是()
x+3y=5m+3m=152x+3x=0m+n=5
A、B、C、D、
2x-3x=3+=3-5y=02m+n=6
x=2
4.在方程3x-ky=0中,如果是它的一個(gè)解,則k的值為_(kāi)______.
y=-3
5.若mxy+9x+3y=-9是關(guān)于x、y的二元一次方程,則m=_______n=_______.
【解二元一次方程組教案】相關(guān)文章:
《消元-解二元一次方程組》教案10-23
實(shí)際問(wèn)題與二元一次方程組的教案08-18
二元一次方程組教學(xué)設(shè)計(jì)07-07
二元一次方程組教學(xué)設(shè)計(jì)06-12
二元一次方程組的圖象解法教案設(shè)計(jì)09-22