欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

教學(xué)計劃

高一數(shù)學(xué)教學(xué)計劃

時間:2025-02-17 04:29:53 教學(xué)計劃 我要投稿

【實用】高一數(shù)學(xué)教學(xué)計劃四篇

  時光飛逝,時間在慢慢推演,我們又將學(xué)習(xí)新的知識,有新的感受,是不是需要好好寫一份教學(xué)計劃呢?好的教學(xué)計劃都具備一些什么特點呢?下面是小編收集整理的高一數(shù)學(xué)教學(xué)計劃4篇,希望能夠幫助到大家。

【實用】高一數(shù)學(xué)教學(xué)計劃四篇

高一數(shù)學(xué)教學(xué)計劃 篇1

  本節(jié)課在教材中的地位和作用:《不等式的基本性質(zhì)》,對即將要學(xué)習(xí)的一元一次不等式的解法乃至高中的不等式的運用都是非常重要的基礎(chǔ)。本節(jié)內(nèi)容掌握的好壞,將直接影響到后面的教學(xué)內(nèi)容。而對于不等式的基本性質(zhì)1和2,相信絕大部分的學(xué)生都不會有很大困難,而不等式的基本性質(zhì)3,通過對以往學(xué)生的了解,發(fā)現(xiàn)很多學(xué)生會忘記分正負兩種情況,因此在本節(jié)新課教學(xué)中,我采用了將不等式未知的性質(zhì)與等式已知的性質(zhì)進行類比教學(xué),讓學(xué)生自己去發(fā)現(xiàn)驗證不等式的性質(zhì)。

  一、教學(xué)目標:

  (一)知識與技能

  1.掌握不等式的三條基本性質(zhì)。

  2.運用不等式的基本性質(zhì)對不等式進行變形。

  (二)過程與方法

  1.通過等式的性質(zhì),探索不等式的性質(zhì),初步體會“類比”的數(shù)學(xué)思想。

  2.通過觀察、猜想、驗證、歸納等數(shù)學(xué)活動,經(jīng)歷從特殊到一般、由具體到抽象的認知過程,感受數(shù)學(xué)思考過程的條理性,發(fā)展思維能力和語言表達能力。

  (三)情感態(tài)度與價值觀

  通過探究不等式基本性質(zhì)的活動,培養(yǎng)學(xué)生合作交流的意識和大膽猜想,樂于探究的良好思維品質(zhì)。

  二、教學(xué)重難點

  教學(xué)重點: 探索不等式的三條基本性質(zhì)并能正確運用它們將不等式變形。

  教學(xué)難點: 不等式基本性質(zhì)3的探索與運用。

  三、教學(xué)方法:自主探究——合作交流

  四、教學(xué)過程:

  情景引入:1.舉例說明什么是不等式?

  2.判斷下列各式是否成立?并說明理由。

  ( 1 )若x-4=12, 則x=16()

  ( 2 )若3x=12, 則 x=4()

  ( 3 )若x-4>12 則 x>16()

  ( 4 )若3x>12則 x>4()

  【設(shè)計意圖】(1)、(2)小題喚起對舊知識等式的基本性質(zhì)的回憶,(3)、(4)小題引導(dǎo)學(xué)生大膽說出自己的想法。通過復(fù)習(xí)既找準了舊知?奎c,又創(chuàng)設(shè)了一種情境,給學(xué)生提供了類比、想象的空間,為后續(xù)學(xué)習(xí)做好了鋪墊。

  教師導(dǎo)語:當我們開始研究不等式的時候,自然會聯(lián)想到它是否與等式有相類似的'性質(zhì)。這節(jié)課我們就通過類比來探究不等式的基本性質(zhì)。

  溫故知新

  問題1.由等式性質(zhì)1你能猜想一下不等式具有什么樣的性質(zhì)嗎?

  等式性質(zhì)1:等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。

  估計學(xué)生會猜:不等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。教師引導(dǎo):“=”沒有方向性,所以可以說所得結(jié)果仍是等式,而不等號:“>,<,≥,≤”具有方向性,我們應(yīng)該重點研究它在方向上的變化。

  問題2.你能通過實驗、猜想,得出進一步的結(jié)論嗎?

  同桌同學(xué)通過實例驗證得出結(jié)論,師生共同總結(jié)不等式性質(zhì)1。

  問題3.你能由等式性質(zhì)2進一步猜想不等式還具有什么性質(zhì)嗎?

  等式性質(zhì)2:等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),等式依然成立。

  估計學(xué)生會猜:不等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),不等號的方向不變。

  你能和小伙伴一起來驗證你們的猜想嗎?(教師鼓勵學(xué)生實踐是檢驗真理的唯一標準。)

  學(xué)生在小組內(nèi)合作交流,發(fā)現(xiàn)了在不等式兩邊都乘或除以同一個數(shù)時,不等號的方向會出現(xiàn)兩種情況。教師進一步引導(dǎo)學(xué)生通過分析、比較探索規(guī)律,從而形成共識,歸納概括出不等式性質(zhì)2和3。

  【設(shè)計意圖】猜想作為教學(xué)的出發(fā)點,啟發(fā)學(xué)生積極思維,探索規(guī)律,讓學(xué)生在“做”數(shù)學(xué)中學(xué)數(shù)學(xué),真正成為學(xué)習(xí)的主人。

  問題4.在不等式兩邊都乘0會出現(xiàn)什么情況?

  問題5.如果a、b、c表示任意數(shù),且a

  【設(shè)計意圖】把文字語言轉(zhuǎn)化為數(shù)學(xué)語言,是數(shù)學(xué)學(xué)習(xí)中的一項基本能力,這里有意識地進行滲透,指導(dǎo)學(xué)生先作變形再填不等號,對字母c的取值進行討論,培養(yǎng)學(xué)生的分類意識,對培養(yǎng)學(xué)生的思維能力有十分重要的意義。

  【想一想】不等式的基本性質(zhì)與等式的基本性質(zhì)有什么相同之處,有什么不同之處?

  學(xué)生思考,獨立總結(jié)異同點。

  【設(shè)計意圖】引導(dǎo)學(xué)生把二者進行比較,有助于加深對不等式基本性質(zhì)的理解,促成知識的“正遷移”。

  綜合訓(xùn)練:你能運用不等式的基本性質(zhì)解決問題嗎?

  1、課本62頁例3

  教師引導(dǎo)學(xué)生觀察每個問題是由a>b經(jīng)過怎樣的變形得到的,應(yīng)該應(yīng)用不等式的哪條基本性質(zhì)。由學(xué)生思考后口答。

  【設(shè)計意圖】對學(xué)生進行推理訓(xùn)練,讓學(xué)生明白,敘述要有根據(jù),進一步提高學(xué)生的邏輯思維能力和語言表達能力。

  2、你認為在運用不等式的基本性質(zhì)時哪一條性質(zhì)最容易出錯,應(yīng)該怎樣記住?

  【設(shè)計意圖】及時進行學(xué)習(xí)反思,總結(jié)經(jīng)驗,通過相互評價學(xué)習(xí)效果,及時發(fā)現(xiàn)問題、解決知識盲點,培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力。

  3.小明的困惑:

  小明用不等式的基本性質(zhì)將不等式m>n進行變形,兩邊都乘以4,4m>4n,兩邊都減去4m, 0>4n-4m,即0>4(n-m),兩邊都除以(n-m),得0>4,0怎么會大于4呢?

  小明可糊涂了……聰明的同學(xué),你能告訴小軍他究竟錯在什么地方嗎?同桌討論。

  【設(shè)計意圖】通過替人排憂解難,強化對不等式三個基本性質(zhì)的理解與運用,突出重點,突破難點。

  4.火眼金睛

 、賏>2, 則3a___2a

  ②2a>3a,則 a ___ 0

  【設(shè)計意圖】通過變式訓(xùn)練,加深學(xué)生對新知的理解,培養(yǎng)學(xué)生分析、探究問題的能力。

  課堂小結(jié):

  這節(jié)課你有哪些收獲?有何體會?你認為自己的表現(xiàn)如何?教師引導(dǎo)學(xué)生回顧、思考、交流。

  【設(shè)計意圖】回顧、總結(jié)、提高。學(xué)生自覺形成本節(jié)的課的知識網(wǎng)絡(luò)。

  思考題:你來決策

  咱們班的王帥同學(xué)準備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標準為:大人全價,小孩半價;方正旅行社的標準為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫王帥同學(xué)考慮一下選擇哪家旅行社更合算嗎?

  【設(shè)計意圖】利用所學(xué)的數(shù)學(xué)知識,解決生活中的問題,加強數(shù)學(xué)與生活的聯(lián)系,體驗數(shù)學(xué)是描述現(xiàn)實世界的重要手段。既培養(yǎng)了學(xué)生用數(shù)學(xué)知識解決實際問題的能力,又樹立了學(xué)好數(shù)學(xué)的信心。

高一數(shù)學(xué)教學(xué)計劃 篇2

  教學(xué)分析

  課本從學(xué)生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時,結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時,課本注重體現(xiàn)邏輯思考的方法,如類比等.

  值得注意的問題:在集合間的關(guān)系教學(xué)中,建議重視使用Venn圖,這有助于學(xué)生通過體會直觀圖示來理解抽象概念;隨著學(xué)習(xí)的深入,集合符號越來越多,建議教學(xué)時引導(dǎo)學(xué)生區(qū)分一些容易混淆的關(guān)系和符號,例如∈與?的區(qū)別.

  三維目標

  1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.

  2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達集合的關(guān)系,加強學(xué)生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.

  重點難點

  教學(xué)重點:理解集合間包含與相等的含義.

  教學(xué)難點:理解空集的含義.

  課時安排

  1課時

  教學(xué)過程

  導(dǎo)入新課

  思路1.實數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實數(shù)之間的關(guān)系,你會想到集合之間有什么關(guān)系呢?(讓學(xué)生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導(dǎo)學(xué)生)

  欲知誰正確,讓我們一起來觀察、研探.

  思路2.復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填空:(1)0N;(2)2Q;(3)-1.5R.

  類比實數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(答案:(1)∈;(2)?;(3)∈)

  推進新課

  提出問題

  (1)觀察下面幾個例子:

 、貯={1,2,3},B={1,2,3,4,5};

 、谠O(shè)A為國興中學(xué)高一(3)班男生的全體組成的集合,B為這個班學(xué)生的全體組成的集合;

 、墼O(shè)C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};

 、蹺={2,4,6},F(xiàn)={6,4,2}.

  你能發(fā)現(xiàn)兩個集合間有什么關(guān)系嗎?

  (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的'子集,同樣是子集,有什么區(qū)別?

  (3)結(jié)合例子④,類比實數(shù)中的結(jié)論:“若a≤b,且b≤a,則a=b”,在集合中,你發(fā)現(xiàn)了什么結(jié)論?

  (4)按升國旗時,每個班的同學(xué)都聚集在一起站在旗桿附近指定的區(qū)域內(nèi),從樓頂向下看,每位同學(xué)是哪個班的,一目了然.試想一下,根據(jù)從樓頂向下看的,要想直觀表示集合,聯(lián)想集合還能用什么表示?

  (5)試用Venn圖表示例子①中集合A和集合B.

  (6)已知A?B,試用Venn圖表示集合A和B的關(guān)系.

  (7)任何方程的解都能組成集合,那么x2+1=0的實數(shù)根也能組成集合,你能用Venn圖表示這個集合嗎?

  (8)一座房子內(nèi)沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應(yīng)該如何命名呢?

  (9)與實數(shù)中的結(jié)論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什么結(jié)論?

  活動:教師從以下方面引導(dǎo)學(xué)生:

  (1)觀察兩個集合間元素的特點.

  (2)從它們含有的元素間的關(guān)系來考慮.規(guī)定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).

  (3)實數(shù)中的“≤”類比集合中的 .

  (4)把指定位置看成是由封閉曲線圍成的,學(xué)生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內(nèi).教師指出:為了直觀地表示集合間的關(guān)系,我們常用平面上封閉曲線的內(nèi)部代表集合,這種圖稱為Venn圖.

  (5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.

  (6)分類討論:當A B時,A B或A=B.

  (7)方程x2+1=0沒有實數(shù)解.

  (8)空集記為 ,并規(guī)定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).

  (9)類比子集.

  討論結(jié)果:

  (1)①集合A中的元素都在集合B中;

 、诩螦中的元素都在集合B中;

 、奂螩中的元素都在集合D中;

 、芗螮中的元素都在集合F中.

  可以發(fā)現(xiàn):對于任意兩個集合A,B有下列關(guān)系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

  (2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

  (3)若A B,且B A,則A=B.

  (4)可以把集合中元素寫在一個封閉曲線的內(nèi)部來表示集合.

  (5)如圖1121所示表示集合A,如圖1122所示表示集合B.

  圖1-1-2-1 圖1-1-2-2

  (6)如圖1-1-2-3和圖1-1-2-4所示.

  圖1-1-2-3 圖1-1-2-4

  (7)不能.因為方程x2+1=0沒有實數(shù)解.

  (8)空集.

高一數(shù)學(xué)教學(xué)計劃 篇3

  本學(xué)期我擔(dān)任高一(1)、(2)兩班的數(shù)學(xué)教學(xué),完成必修1、2的教學(xué)。本學(xué)期教學(xué)主要內(nèi)容有:集合與函數(shù)的概念,基本初等函數(shù),函數(shù)的應(yīng)用,空間幾何體,點、直線、平面之間的位置關(guān)系,直線與方程,圓與方程等七個章節(jié)的內(nèi)容,F(xiàn)將本學(xué)期高中數(shù)學(xué)必修1、必修2的教學(xué)總結(jié)如下:

  一、教學(xué)方面

  1、要認真研究課程標準。在課程改革中,教師是關(guān)鍵,教師對新課程的理解與參與是推進課程改革的前提。認真學(xué)習(xí)數(shù)學(xué)課程標準,對課改有所了解。課程標準明確規(guī)定了教學(xué)的目的、教學(xué)目標、教學(xué)的指導(dǎo)思想以及教學(xué)內(nèi)容的確定和安排。繼承傳統(tǒng),更新教學(xué)觀念。高中數(shù)學(xué)新課標指出:“豐富學(xué)生的學(xué)習(xí)方式,改進學(xué)生的學(xué)習(xí)方法是高中數(shù)學(xué)課程追求的基本理念。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只限于對概念、結(jié)論和技能的記憶、模仿和接受,獨立思考、自主探索、動手實踐、合作交流、閱讀自學(xué)等都是學(xué)習(xí)數(shù)學(xué)的重要方式。在高中數(shù)學(xué)教學(xué)中,教師的講授仍然是重要的教學(xué)方式之一,但要注意的是必須關(guān)注學(xué)生的主體參與,師生互動”。

  2、合理使用教科書,提高課堂效益。對教材內(nèi)容,教學(xué)時需要作適當處理,適當補充或降低難度是備課必須處理的。靈活使用教材,才能在教學(xué)中少走彎路,提高教學(xué)質(zhì)量。對教材中存在的一些問題,教師應(yīng)認真理解課標,對課標要求的重點內(nèi)容要作適量的補充;對教材中不符合學(xué)生實際的題目要作適當?shù)恼{(diào)整。此外,還應(yīng)把握教材的“度”,不要想一步到位,如函數(shù)性質(zhì)的教學(xué),要多次螺旋上升,逐步加深。

  3、改進學(xué)生的學(xué)習(xí)方式,注意問題的提出、探究和解決。教會學(xué)生發(fā)現(xiàn)問題和提出問題的方法。以問題引導(dǎo)學(xué)生去發(fā)現(xiàn)、探究、歸納、總結(jié)。引導(dǎo)他們更加主動、有興趣的學(xué),培養(yǎng)問題意識。

  4、在課后作業(yè),反饋練習(xí)中培養(yǎng)學(xué)生自學(xué)能力。課后作業(yè)和反饋練習(xí)、測試是檢查學(xué)生學(xué)習(xí)效果的重要手段。抓好這一環(huán)節(jié)的教學(xué),也有利于復(fù)習(xí)和鞏固舊課,還鍛煉了學(xué)生的自學(xué)能力。在學(xué)完一課、一單元后,讓學(xué)生主動歸納總結(jié),要求學(xué)生盡量自己獨立完成,以便正確反饋教學(xué)效果。

  二、存在困惑

  1、書本習(xí)題都較簡單和基礎(chǔ),而我們的教輔題目偏難,加重了學(xué)生的學(xué)習(xí)負擔(dān),而且學(xué)生完成情況很不好。課時又不足,教學(xué)時間緊,沒時間講評這些練習(xí)題。

  2、在教學(xué)中,經(jīng)常出現(xiàn)一節(jié)課的教學(xué)任務(wù)完不成的現(xiàn)象,更少鞏固練習(xí)的時間。勉強按規(guī)定時間講完,一些學(xué)生聽得似懂非懂,造成差生越來越多。而且知識內(nèi)容需要補充的'內(nèi)容有:乘法公式;因式分解的十字相乘法;一元二次方程及根與系數(shù)的關(guān)系;根式的運算;解不等式等知識。

  3、雖然經(jīng)常要求學(xué)生課后要去完成教輔上的精選的題目,但是,相當部分的同學(xué)還是沒辦法完成。學(xué)生的課業(yè)負擔(dān)太重,有的學(xué)生則是學(xué)習(xí)意識淡薄。

  三、今后要注意的幾點

  1、要處理好課時緊張與教學(xué)內(nèi)容多的矛盾,加強對教材的研究;

  2、注意對教輔材料題目的精選;

  3、要加強對數(shù)學(xué)后進生的思想教育。

高一數(shù)學(xué)教學(xué)計劃 篇4

  一、學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在的主要問題

  我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:

  1、進一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

  2、被動學(xué)習(xí).許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到門道,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

  3、對自己學(xué)習(xí)數(shù)學(xué)的好差(或成敗)不了解,更不會去進行反思總結(jié),甚至根本不關(guān)心自己的成敗。

  4、不能計劃學(xué)習(xí)行動,不會安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時監(jiān)控每一步驟,對學(xué)習(xí)結(jié)果不會正確地自我評價。

  5、不重視基礎(chǔ).一些自我感覺良好的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的水平,好高鶩遠,重量輕質(zhì) ,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯就是中途卡殼 。

  此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識和能力,對數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準確運用數(shù)學(xué)語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴重制約著學(xué)生數(shù)學(xué)成績的提高。

  二、教學(xué)策略思考與實踐

  針對我校高一學(xué)生的具體情況,我在高一數(shù)學(xué)新教材教學(xué)實踐與探究中,貫徹因人施教,因材施教原則。以學(xué)法指導(dǎo)為突破口;著重在讀、講、練、輔、作業(yè)等方面下功夫,取得一定效果。

  加強學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。

  制定計劃使學(xué)習(xí)目的明確,時間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學(xué)習(xí)意志。

  課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ).課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動權(quán).自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。

  上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。學(xué)然后知不足,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。

  及時復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對所學(xué)的新知識由懂到會。

  獨立作業(yè)是學(xué)生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學(xué)新知識的理解和對新技能的掌握過程.這一過程是對學(xué)生意志毅力的考驗,通過運用使學(xué)生對所學(xué)知識由會到熟。

  解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考,實在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯的地方拿出來復(fù)習(xí)強化,作適當?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅持使對所學(xué)知識由熟到活。

  系統(tǒng)小結(jié)是學(xué)生通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié).小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系.以達到對所學(xué)知識融會貫通的目的.經(jīng)常進行多層次小結(jié),能對所學(xué)知識由活到悟。

  課外學(xué)習(xí)包括閱讀課外書籍與報刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等.課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情。

  1、讀。俗話說不讀不憤,不憤不悱。首先要讀好概念。讀概念要咬文嚼字,掌握概念內(nèi)涵和外延及辨析概念。例如,集合是數(shù)學(xué)中的'一個原始概念,是不加定義的。它從常見的我校高一年級學(xué)生 、我家的家用電器、太平洋、大西洋、印度洋、北冰洋及自然數(shù)等事物中抽象出來,但集合的概念又不同于特殊具體的實物集合,集合的確定及性質(zhì)特征是由一組公理來界定的。確定性、無序性、互異性常常是集合的代名詞。

  再如象限角的概念,要向?qū)W生解釋清楚,角的始邊與x軸的非負半軸重合和與x軸的正半軸重合的細微差別;根據(jù)定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導(dǎo)學(xué)生從多層次,多角度去認識和掌握數(shù)學(xué)概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結(jié)論。如高一新教材(上)等比數(shù)列的前n項和Sn.有q1和q=1兩種情形;對數(shù)計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規(guī)范。如在解對數(shù)函數(shù)題時,要注意真數(shù)大于0的隱含條件;解有關(guān)二次函數(shù)題時要注意二次項系數(shù)不為零的隱含條件等。讀書要鼓勵學(xué)生相互議論。俗語說議一議知是非,爭一爭明道理。例如,讓學(xué)生議論數(shù)列與數(shù)集的聯(lián)系與區(qū)別。數(shù)列與數(shù)的集合都是具有某種共同屬性的全體。數(shù)列中的數(shù)是有順序的,而數(shù)集中的元素是沒有順序的;同一個數(shù)可以在數(shù)列中重復(fù)出現(xiàn),而數(shù)集中的元素是沒有重復(fù)的(相同的數(shù)在數(shù)集中算作同一個元素)。在引導(dǎo)學(xué)生閱讀時,教師要經(jīng)常幫助學(xué)生歸類、總結(jié),盡可能把相關(guān)知識表格化。如一元二次不等式的解情況列表,三角函數(shù)的圖象與性質(zhì)列表等,便于學(xué)生記憶掌握。

  2、講。外國有一位教育家曾經(jīng)說過:教師的作用在于將冰冷的知識加溫后傳授給學(xué)生。講是實踐這種傳授的最直接和最有效的教學(xué)手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天沖刺一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。

  每堂新授課中,在復(fù)習(xí)必要知識和展示教學(xué)目標的基礎(chǔ)上,老師著重揭示知識的產(chǎn)生、形成、發(fā)展過程,解決學(xué)生疑惑。比如在學(xué)習(xí)兩角和差公式之前,學(xué)生已經(jīng)掌握五套誘導(dǎo)公式,可以將求任意角三角函數(shù)值問題轉(zhuǎn)化為求某一個銳角三角函數(shù)值的問題。此時教師應(yīng)進一步引導(dǎo)學(xué)生:對于一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函數(shù)就呼之欲出了,極大激發(fā)了學(xué)生的學(xué)習(xí)興趣。講課要注意從簡單到復(fù)雜的過程,要讓學(xué)生從感性認識上升到理性認識。鼓勵學(xué)生應(yīng)積極、主動參與課堂活動的全過程,教、學(xué)同步。讓學(xué)生自己真正做學(xué)習(xí)的主人。

  例如,講解函數(shù)的圖象應(yīng)從振幅、周期、相位依次各自進行變化,然后再綜合,并盡可能利用多媒體輔助教學(xué),使學(xué)生容易接受。其次講要注重突出數(shù)學(xué)思想方法的教學(xué),注重學(xué)生數(shù)學(xué)能力的培養(yǎng)。例如講到等比數(shù)列的概念、通項公式、等比中項、等比數(shù)列的性質(zhì)、等比數(shù)列的前n項和?梢砸龑(dǎo)學(xué)生對照等差數(shù)列的相應(yīng)的內(nèi)容,比較聯(lián)系。讓學(xué)生更清楚等差數(shù)列和等比數(shù)列是兩個對偶概念。

  3、練。數(shù)學(xué)是以問題為中心。學(xué)生怎么應(yīng)用所學(xué)知識和方法去分析問題和解決問題,必須進行練習(xí)。首先練習(xí)要重視基礎(chǔ)知識和基本技能,切忌過早地進行高、深、難練習(xí)。鑒于目前我校高一的生源現(xiàn)狀,基礎(chǔ)訓(xùn)練是很有必要的。課本的例題、練習(xí)題和習(xí)題要求學(xué)生要題題過關(guān);補充的練習(xí),應(yīng)先是課本中練習(xí)及習(xí)題的簡單改造題,這有利于學(xué)生鞏固基礎(chǔ)知識和基本技能。讓學(xué)生通過認真思考可以完成。即讓學(xué)生跳一跳可以摸得著。一定要讓學(xué)生在練習(xí)中強化知識、應(yīng)用方法,在練習(xí)中分步達到教學(xué)目標要求并獲得再練習(xí)的興趣和信心。例如根據(jù)數(shù)列前幾項求通項公式練習(xí),在新教材高一(上)P111例題2上簡單地做一些改造,便可以變化出各種求解通項公式方法的題目;再如數(shù)列復(fù)習(xí)參考題第12題;就是一個改造性很強的數(shù)學(xué)題,教師可以在上面做很多文章。其次要講練結(jié)合。學(xué)生要練習(xí),老師要評講。多講解題思路和解題方法,其中包括成功的與錯誤的。特別是注意要充分暴露錯誤的思維發(fā)生過程,在課堂造就民主氣氛,充分傾聽學(xué)生意見,哪怕走點彎路 ,吃點苦頭另一方面,則引導(dǎo)學(xué)生各抒己見,評判各方面之優(yōu)劣,最后選出大家公認的最佳方法。還可適當讓學(xué)生涉及一些一題多解的題目,拓展思維空間,培養(yǎng)學(xué)生思維的多面性和深刻性。

  例如,高一(下)P26例5求證 ?梢詮囊贿呑C到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元法,將無理不等式化為關(guān)于t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標系中作出它們的圖像。求兩圖在x軸上方的交點的橫坐標為2,最終得解。要求學(xué)生掌握通解通法同時,也要講究特殊解法。最后練習(xí)要增強應(yīng)用性。例如用函數(shù)、不等式、數(shù)列、三角、向量等相關(guān)知識解實際應(yīng)用題。引導(dǎo)學(xué)生學(xué)會建立數(shù)學(xué)模型,并應(yīng)用所學(xué)知識,研究此數(shù)學(xué)模型。

  4、作業(yè)。鑒于學(xué)生現(xiàn)有的知識、能力水平差異較大,為了使每一位學(xué)生都能在自己的最近發(fā)展區(qū)更好地學(xué)習(xí)數(shù)學(xué),得到最好的發(fā)展,制定分層次作業(yè)。即將作業(yè)難度和作業(yè)量由易到難分成A、B、C三檔,由學(xué)生根據(jù)自身學(xué)習(xí)情況自主選擇,然后在充分尊重學(xué)生意見的基礎(chǔ)上再進行協(xié)調(diào)。以后的時間里,根據(jù)學(xué)生實際學(xué)習(xí)情況,隨時進行調(diào)整。

  5、輔導(dǎo)。輔導(dǎo)指兩方面,培優(yōu)和補差。對于數(shù)學(xué)尖子生,主要培養(yǎng)其自學(xué)能力、獨立鉆研精神和集體協(xié)作能力。具體做法:成立由三至六名學(xué)生組成的討論組,教師負責(zé)為他們介紹高考、競賽參考書,并定期提供學(xué)習(xí)資料和咨詢、指導(dǎo)。下面著重談?wù)勓a差工作。輔導(dǎo)要鼓勵學(xué)生多提出問題,對于不能提高的同學(xué)要從平時作業(yè)及練習(xí)考試中發(fā)現(xiàn)問題,跟蹤到人,跟蹤到具體知識。要有計劃,有針對性和目的性地輔導(dǎo),切忌冷飯重抄和無目標性。要及時檢查輔導(dǎo)效果,做到學(xué)生人人知道自己存在問題(越具體越好),老師對輔導(dǎo)學(xué)生情況要了如指掌。對學(xué)有困難的同學(xué),要耐心細致輔導(dǎo),還要注意鼓勵學(xué)生戰(zhàn)勝自己,提高自已的分析和解決問題的能力。

【高一數(shù)學(xué)教學(xué)計劃】相關(guān)文章:

高一數(shù)學(xué)教學(xué)計劃07-16

職高數(shù)學(xué)高一教學(xué)計劃04-10

高一數(shù)學(xué)-教學(xué)計劃01-17

高一數(shù)學(xué)教學(xué)計劃201707-02

高一數(shù)學(xué)教學(xué)計劃范文07-21

高一數(shù)學(xué)下冊教學(xué)計劃06-01

2022高一數(shù)學(xué)教學(xué)計劃07-20

制定高一數(shù)學(xué)教學(xué)計劃02-15

高一數(shù)學(xué)教學(xué)計劃人教版07-27

高一數(shù)學(xué)培優(yōu)補差教學(xué)計劃05-26