初中數(shù)學(xué)教學(xué)設(shè)計(jì)范文(通用15篇)
在教學(xué)工作者開展教學(xué)活動(dòng)前,時(shí)常需要準(zhǔn)備好教學(xué)設(shè)計(jì),編寫教學(xué)設(shè)計(jì)有利于我們科學(xué)、合理地支配課堂時(shí)間。教學(xué)設(shè)計(jì)應(yīng)該怎么寫才好呢?以下是小編收集整理的初中數(shù)學(xué)教學(xué)設(shè)計(jì)范文,僅供參考,希望能夠幫助到大家。
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 1
一、教學(xué)目標(biāo):
1、知道一次函數(shù)與正比例函數(shù)的定義。
2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì)。
3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系。
4、掌握直線的平移法則簡(jiǎn)單應(yīng)用。
5、能應(yīng)用本章的基礎(chǔ)知識(shí)熟練地解決數(shù)學(xué)問題。
二、教學(xué)重、難點(diǎn):
重點(diǎn):初步構(gòu)建比較系統(tǒng)的函數(shù)知識(shí)體系。
難點(diǎn):對(duì)直線的平移法則的理解,體會(huì)數(shù)形結(jié)合思想。
三、教學(xué)過(guò)程:
1、一次函數(shù)與正比例函數(shù)的定義:
一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)。
正比例函數(shù):對(duì)于y=kx+b,當(dāng)b=0,k≠0時(shí),有y=kx,此時(shí)稱y是x的正比例函數(shù),k為正比例系數(shù)。
2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:
。1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。
。2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過(guò)原點(diǎn)(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過(guò)點(diǎn)(0,b)且與y=kx
平行的一條直線。
基礎(chǔ)訓(xùn)練:
1、寫出一個(gè)圖象經(jīng)過(guò)點(diǎn)(1,—3)的函數(shù)解析式為:
2、直線y=—2X—2不經(jīng)過(guò)第象限,y隨x的增大而。
3、如果P(2,k)在直線y=2x+2上,那么點(diǎn)P到x軸的距離是:
4、已知正比例函數(shù)y=(3k—1)x,若y隨x的`增大而增大,則k是:
5、過(guò)點(diǎn)(0,2)且與直線y=3x平行的直線是:
6、若正比例函數(shù)y=(1—2m)x的圖像過(guò)點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)當(dāng)x1y2,則m的取值范圍是:
7、若y—2與x—2成正比例,當(dāng)x=—2時(shí),y=4,則x=時(shí),y=—4。
8、直線y=—5x+b與直線y=x—3都交y軸上同一點(diǎn),則b的值為。
9、已知圓O的半徑為1,過(guò)點(diǎn)A(2,0)的直線切圓O于點(diǎn)B,交y軸于點(diǎn)C。
。1)求線段AB的長(zhǎng)。
。2)求直線AC的解析式。
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 2
一、教學(xué)目標(biāo)
1、了解二次根式的意義;
2、掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的.邏輯思維能力;
5、通過(guò)二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):
。1)二次根的意義;
。2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)提問
1、什么叫平方根、算術(shù)平方根?
2、說(shuō)出下列各式的意義,并計(jì)算
。ǘ┮胄抡n
新課:二次根式
定義:式子叫做二次根式。
對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
。1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。
。2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?
例2x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?
解:略。
說(shuō)明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。
例3當(dāng)字母取何值時(shí),下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。
。2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。
。3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
。2)由,得3a—1>0,解得。
。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 3
一、教學(xué)目標(biāo):
1、理解二元一次方程及二元一次方程的解的概念;
2、學(xué)會(huì)求出某二元一次方程的幾個(gè)解和檢驗(yàn)?zāi)硨?duì)數(shù)值是否為二元一次方程的解;
3、學(xué)會(huì)把二元一次方程中的一個(gè)未知數(shù)用另一個(gè)未知數(shù)的一次式來(lái)表示;
4、在解決問題的過(guò)程中,滲透類比的思想方法,并滲透德育教育。
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):二元一次方程的意義及二元一次方程的解的概念。
難點(diǎn):把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。
三、教學(xué)方法與教學(xué)手段:
通過(guò)與一元一次方程的比較,加強(qiáng)學(xué)生的類比的思想方法;通過(guò)“合作學(xué)習(xí)”,使學(xué)生認(rèn)識(shí)數(shù)學(xué)是根據(jù)實(shí)際的需要而產(chǎn)生發(fā)展的觀點(diǎn)。
四、教學(xué)過(guò)程:
1、情景導(dǎo)入:
新聞鏈接:x70歲以上老人可領(lǐng)取生活補(bǔ)助。
得到方程:80a+150b=902880、
2、新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1次的方程叫做二元一次方程。
做一做:
。1)根據(jù)題意列出方程:
、傩∶魅タ赐棠,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價(jià)、設(shè)蘋果的單價(jià)x元/kg,梨的單價(jià)y元/kg;
、谠诟咚俟飞,一輛轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米,如果設(shè)轎車的速度是a千米/小時(shí),卡車的速度是b千米/小時(shí),可得方程:
。2)課本P80練習(xí)2、判定哪些式子是二元一次方程方程。
合作學(xué)習(xí):
活動(dòng)背景愛心滿人間——記求是中學(xué)“學(xué)雷鋒、關(guān)愛老人”志愿者活動(dòng)。
問題:參加活動(dòng)的36名志愿者,分為勞動(dòng)組和文藝組,其中勞動(dòng)組每組3人,文藝組每組6人、團(tuán)支書擬安排8個(gè)勞動(dòng)組,2個(gè)文藝組,單從人數(shù)上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學(xué)生檢驗(yàn)得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的`一對(duì)未知數(shù)的值叫做二元一次方程的一個(gè)解。
并提出注意二元一次方程解的書寫方法。
3、合作學(xué)習(xí):
給定方程x+2y=8,男同學(xué)給出y(x取絕對(duì)值小于10的整數(shù))的值,女同學(xué)馬上給出對(duì)應(yīng)的x的值;接下來(lái)男女同學(xué)互換、(比一比哪位同學(xué)反應(yīng)快)請(qǐng)算的最快最準(zhǔn)確的同學(xué)講他的計(jì)算方法、提問:給出x的值,計(jì)算y的值時(shí),y的系數(shù)為多少時(shí),計(jì)算y最為簡(jiǎn)便?
出示例題:已知二元一次方程x+2y=8。
。1)用關(guān)于y的代數(shù)式表示x;
(2)用關(guān)于x的代數(shù)式表示y;
。3)求當(dāng)x=2,0,—3時(shí),對(duì)應(yīng)的y的值,并寫出方程x+2y=8的三個(gè)解。
。ó(dāng)用含x的一次式來(lái)表示y后,再請(qǐng)同學(xué)做游戲,讓同學(xué)體會(huì)一下計(jì)算的速度是否要快)
4、課堂練習(xí):
。1)已知:5xm—2yn=4是二元一次方程,則m+n=;
。2)二元一次方程2x—y=3中,方程可變形為y=當(dāng)x=2時(shí),y=;
5、你能解決嗎?
小紅到郵局給遠(yuǎn)在農(nóng)村的爺爺寄掛號(hào)信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少?gòu)堖@兩種面額的郵票?說(shuō)說(shuō)你的方案。
6、課堂小結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
。2)二元一次方程解的不定性和相關(guān)性;
。3)會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。
7、布置作業(yè):
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 4
一、教材分析
本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(六三學(xué)制)七年級(jí)下冊(cè)第七章第三節(jié)多邊形內(nèi)角和。
二、教學(xué)目標(biāo)
1、知識(shí)目標(biāo):了解多邊形內(nèi)角和公式。
2、數(shù)學(xué)思考:通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
3、解決問題:通過(guò)探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標(biāo):通過(guò)猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
三、教學(xué)重、難點(diǎn)
重點(diǎn):探索多邊形內(nèi)角和。
難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:
引導(dǎo)發(fā)現(xiàn)法、討論法
五、教具、學(xué)具
教具:多媒體課件
學(xué)具:三角板、量角器
六、教學(xué)媒體:
大屏幕、實(shí)物投影
七、教學(xué)過(guò)程:
。ㄒ唬﹦(chuàng)設(shè)情境,設(shè)疑激思
師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎?
活動(dòng)一:探究四邊形內(nèi)角和。
在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360。
方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360。
接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動(dòng)二:探究五邊形、六邊形、十邊形的內(nèi)角和。
學(xué)生先獨(dú)立思考每個(gè)問題再分組討論。
關(guān)注:
。1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
。2)學(xué)生能否采用不同的方法。
學(xué)生分組討論后進(jìn)行交流(五邊形的內(nèi)角和)
方法1:把五邊形分成三個(gè)三角形,3個(gè)180的'和是540。
方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180的和減去一個(gè)周角360。結(jié)果得540。
方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180的和減去一個(gè)平角180,結(jié)果得540。
方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180加上360,結(jié)果得540。
師:你真聰明!做到了學(xué)以致用。
交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。
。ǘ┮晁伎,培養(yǎng)創(chuàng)新
師:通過(guò)前面的討論,你能知道多邊形內(nèi)角和嗎?
活動(dòng)三:探究任意多邊形的內(nèi)角和公式。
思考:
。1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
。2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?
。3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?
學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180的和,五邊形內(nèi)角和是3個(gè)180的和,六邊形內(nèi)角和是4個(gè)180的和,十邊形內(nèi)角和是8個(gè)180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。
發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n—2)的關(guān)系。
得出結(jié)論:多邊形內(nèi)角和公式:(n—2)·180。
。ㄈ⿲(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)
1、口答:(1)七邊形內(nèi)角和()
。2)九邊形內(nèi)角和()
。3)十邊形內(nèi)角和()
2、搶答:(1)一個(gè)多邊形的內(nèi)角和等于1260,它是幾邊形?
。2)一個(gè)多邊形的內(nèi)角和是1440,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。
3、討論回答:一個(gè)多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個(gè)多邊形的各個(gè)內(nèi)角都相等,這個(gè)多邊形每個(gè)內(nèi)角等于多少度?
。ㄋ模└爬ù鎯(chǔ)
學(xué)生自己歸納總結(jié):
1、多邊形內(nèi)角和公式
2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題
3、用數(shù)形結(jié)合的思想解決問題
。ㄎ澹┳鳂I(yè):練習(xí)冊(cè)第93頁(yè)1、2、3
八、教學(xué)反思:
1、教的轉(zhuǎn)變
本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測(cè)量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗(yàn)發(fā)現(xiàn)的樂趣。
2、學(xué)的轉(zhuǎn)變
學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變
整節(jié)課以“流暢、開放、合作、隱導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 5
教學(xué)目標(biāo):
1、了解公式的意義,使學(xué)生能用公式解決簡(jiǎn)單的實(shí)際問題;
2、初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3、通過(guò)本節(jié)課的教學(xué),使學(xué)生初步了解公式來(lái)源于實(shí)踐又反作用于實(shí)踐。
教學(xué)建議:
一、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):通過(guò)具體例子了解公式、應(yīng)用公式。
難點(diǎn):從實(shí)際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來(lái)的歸納的思想方法。
二、重點(diǎn)、難點(diǎn)分析
人們從一些實(shí)際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時(shí),首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計(jì)算時(shí),就是求代數(shù)式的值了。有的公式,可以借助運(yùn)算推導(dǎo)出來(lái);有的公式,則可以通過(guò)實(shí)驗(yàn),從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來(lái)。用這些抽象出的具有一般性的公式解決一些問題,會(huì)給我們認(rèn)識(shí)和改造世界帶來(lái)很多方便。
三、知識(shí)結(jié)構(gòu)
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過(guò)觀察歸納推導(dǎo)公式解決一些實(shí)際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1、對(duì)于給定的`可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識(shí)公式中每一個(gè)字母、數(shù)字的意義,以及這些數(shù)量之間的對(duì)應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對(duì)公式的靈活應(yīng)用。
2、在教學(xué)過(guò)程中,應(yīng)使學(xué)生認(rèn)識(shí)有時(shí)問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過(guò)分析和具體運(yùn)算推導(dǎo)新公式。
3、在解決實(shí)際問題時(shí),學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對(duì)應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再?gòu)囊话愕教厥庹J(rèn)識(shí)過(guò)程,有助于提高學(xué)生分析問題、解決問題的能力。
教學(xué)設(shè)計(jì)示例:
一、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1、使學(xué)生能利用公式解決簡(jiǎn)單的實(shí)際問題。
2、使學(xué)生理解公式與代數(shù)式的關(guān)系。
。ǘ┠芰τ(xùn)練點(diǎn)
1、利用數(shù)學(xué)公式解決實(shí)際問題的能力。
2、利用已知的公式推導(dǎo)新公式的能力。
。ㄈ┑掠凉B透點(diǎn)
數(shù)學(xué)來(lái)源于生產(chǎn)實(shí)踐,又反過(guò)來(lái)服務(wù)于生產(chǎn)實(shí)踐。
。ㄋ模┟烙凉B透點(diǎn)
數(shù)學(xué)公式是用簡(jiǎn)潔的數(shù)學(xué)形式來(lái)闡明自然規(guī)定,解決實(shí)際問題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡(jiǎn)潔美。
二、學(xué)法引導(dǎo)
1、數(shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問小學(xué)里學(xué)過(guò)的公式為基礎(chǔ)、突破難點(diǎn)。
2、學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計(jì)算。
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1、重點(diǎn):利用舊公式推導(dǎo)出新的圖形的計(jì)算公式。
2、難點(diǎn):同重點(diǎn)。
3、疑點(diǎn):把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差。
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀,自制膠片。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教者投影顯示推導(dǎo)梯形面積計(jì)算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式。
七、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情景,復(fù)習(xí)引入
師:同學(xué)們已經(jīng)知道,代數(shù)的一個(gè)重要特點(diǎn)就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們?cè)谛W(xué)里學(xué)過(guò)許多公式,請(qǐng)大家回憶一下,我們已經(jīng)學(xué)過(guò)哪些公式,教法說(shuō)明,讓學(xué)生一開始就參與課堂教學(xué),使學(xué)生在后面利用公式計(jì)算感到不生疏。
在學(xué)生說(shuō)出幾個(gè)公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運(yùn)用公式解決實(shí)際問題。
板書:公式
師:小學(xué)里學(xué)過(guò)哪些面積公式?
板書:S=ah
。ǔ鍪就队1)。解釋三角形,梯形面積公式
【教法說(shuō)明】
讓學(xué)生感知用割補(bǔ)法求圖形的面積。
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 6
一、教材分析:
反比例函數(shù)的圖象與性質(zhì)是對(duì)正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對(duì)比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時(shí)的學(xué)習(xí)是學(xué)生對(duì)函數(shù)的圖象與性質(zhì)一個(gè)再知的過(guò)程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時(shí)應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對(duì)反比例函數(shù)有一個(gè)形象和直觀的認(rèn)識(shí)。
二、教學(xué)目標(biāo)分析
根據(jù)二期課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動(dòng)起學(xué)生參與教學(xué)過(guò)程”的精神。在教學(xué)設(shè)計(jì)上,我設(shè)想通過(guò)使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識(shí)的同時(shí)激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動(dòng)探索。
因此把教學(xué)目標(biāo)確定為:
1、掌握反比例函數(shù)的概念,能夠根據(jù)已知條件求出反比例函數(shù)的解析式;學(xué)會(huì)用描點(diǎn)法畫出反比例函數(shù)的圖象;掌握?qǐng)D象的特征以及由函數(shù)圖象得到的函數(shù)性質(zhì)。
2、在教學(xué)過(guò)程中引導(dǎo)學(xué)生自主探索、思考及想象,從而培養(yǎng)學(xué)生觀察、分析、歸納的綜合能力。
3、通過(guò)學(xué)習(xí)培養(yǎng)學(xué)生積極參與和勇于探索的精神。
三、教學(xué)重點(diǎn)難點(diǎn)分析
本堂課的重點(diǎn)是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質(zhì);
難點(diǎn)則是如何抓住特征準(zhǔn)確畫出反比例函數(shù)的圖象。
為了突出重點(diǎn)、突破難點(diǎn)。我設(shè)計(jì)并制作了能動(dòng)態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動(dòng)探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。
四、教學(xué)方法
鑒于教材特點(diǎn)及初二學(xué)生的年齡特點(diǎn)、心理特征和認(rèn)知水平,設(shè)想采用問題教學(xué)法
和對(duì)比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動(dòng)探究,主動(dòng)獲取知識(shí)。同時(shí)注意與學(xué)生已有知識(shí)的聯(lián)系,減少學(xué)生對(duì)新概念接受的困難,給學(xué)生充分的自主探索時(shí)間。通過(guò)教師的引導(dǎo),啟發(fā)調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在課堂上多活動(dòng)、多觀察,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來(lái),組織學(xué)生參與“探究——討論——交流——總結(jié)”的學(xué)習(xí)活動(dòng)過(guò)程,同時(shí)在教學(xué)中,還充分利用多媒體教學(xué),通過(guò)演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,讓每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,培養(yǎng)學(xué)生直覺思維能力。
五、學(xué)法指導(dǎo)
本堂課立足于學(xué)生的“學(xué)”,要求學(xué)生多動(dòng)手,多觀察,從而可以幫助學(xué)生形成分析、
對(duì)比、歸納的思想方法。在對(duì)比和討論中讓學(xué)生在“做中學(xué)”,提高學(xué)生利用已學(xué)知識(shí)去主動(dòng)獲取新知識(shí)的能力。因此在課堂上要采用積極引導(dǎo)學(xué)生主動(dòng)參與,合作交流的方法組織教學(xué),使學(xué)生真正成為教學(xué)的主體,體會(huì)參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。
六、教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)引入——反函數(shù)解析式
練習(xí)1:寫出下列各題的關(guān)系式:
。1)正方形的周長(zhǎng)C和它的一邊的長(zhǎng)a之間的關(guān)系
。2)運(yùn)動(dòng)會(huì)的田徑比賽中,運(yùn)動(dòng)員小王的平均速度是8米/秒,他所跑過(guò)的路程s和所用時(shí)間t之間的關(guān)系
。3)矩形的面積為10時(shí),它的長(zhǎng)x和寬y之間的關(guān)系
。4)王師傅要生產(chǎn)100個(gè)零件,他的工作效率x和工作時(shí)間t之間的關(guān)系
問題1:請(qǐng)大家判斷一下,在我們寫出來(lái)的這些關(guān)系式中哪些是正比例函數(shù)?
問題1主要是復(fù)習(xí)正比例函數(shù)的定義,為后面學(xué)生運(yùn)用對(duì)比的方法給出反比例函數(shù)的定義打下基礎(chǔ)。
問題2:那么請(qǐng)大家再仔細(xì)觀察一下,其余兩個(gè)函數(shù)關(guān)系式有什么共同點(diǎn)嗎?
通過(guò)問題2來(lái)引出反比例函數(shù)的解析式,請(qǐng)學(xué)生對(duì)比正比例函數(shù)的定
義來(lái)給出反比例函數(shù)的定義,這不僅有助于對(duì)舊知識(shí)的復(fù)習(xí)和鞏固,同時(shí)還可以培養(yǎng)學(xué)生的對(duì)比和探究能力。
例題1:已知變量y與x成反比例,且當(dāng)x=2時(shí),y=9
。1)寫出y與x之間的函數(shù)解析式
。2)當(dāng)x=3.5時(shí),求y的值
(3)當(dāng)y=5時(shí),求x的值
通過(guò)對(duì)例1的學(xué)習(xí)使學(xué)生掌握如何根據(jù)已知條件來(lái)求出反比例函數(shù)的解析式。在
解題過(guò)程中,引導(dǎo)學(xué)生運(yùn)用在求正比例函數(shù)的解析式時(shí)用到的“待定系數(shù)法”,先設(shè)反比例函數(shù)為,再把相應(yīng)的x,y值代入求出k,k值的確定,函數(shù)解析式也就確定了。
課堂練習(xí):已知x與y成反比例,根據(jù)以下條件,求出y與x之間的函數(shù)關(guān)系式
。1)x=2,y=3(2)x=,y=
通過(guò)此題,對(duì)學(xué)生掌握如何根據(jù)已知條件去求反比例函數(shù)的解析式的學(xué)習(xí)情況做一個(gè)簡(jiǎn)單的反饋。
。ǘ┨骄繉W(xué)習(xí)1——函數(shù)圖象的畫法
問題3:如何畫出正比例函數(shù)的圖象?
通過(guò)問題3來(lái)復(fù)習(xí)正比例函數(shù)圖象的畫法主要分為列表、描點(diǎn)、連線三個(gè)步驟,為學(xué)習(xí)反比例函數(shù)圖像的畫法打下基礎(chǔ)。
問題4:那反比例函數(shù)的圖象應(yīng)該怎樣去畫呢?
在教學(xué)過(guò)程中可以引導(dǎo)學(xué)生仿照正比例函數(shù)圖象的的`畫法。
設(shè)想的教學(xué)設(shè)計(jì)是:
。1)引導(dǎo)學(xué)生運(yùn)用在畫正比例函數(shù)圖象中所學(xué)到的方法,分小組討論嘗試,采用列表、描點(diǎn)、連線的方法畫出函數(shù)和的圖象;
。2)老師邊巡視,邊指導(dǎo),用實(shí)物投影儀反映一些學(xué)生在函數(shù)圖象中出現(xiàn)的典型錯(cuò)誤,和學(xué)生一起找出錯(cuò)誤的地方,分析原因;
。3)隨后老師在黑板上演示畫好反比例函數(shù)圖像的步驟,展示正確的函數(shù)圖象,引導(dǎo)學(xué)生觀察其圖象特征(雙曲線有兩個(gè)分支)。
初二學(xué)生是首次接觸到雙曲線這種比較特殊函數(shù)圖象,設(shè)想學(xué)生可能會(huì)在下面幾個(gè)環(huán)節(jié)中出錯(cuò):
。1)在“列表”這一環(huán)節(jié)
在取點(diǎn)時(shí)學(xué)生可能會(huì)取零,在這里可以引導(dǎo)學(xué)生結(jié)合代數(shù)的方法得出x不能為零。也可能由于在取點(diǎn)時(shí)的不恰當(dāng),導(dǎo)致函數(shù)圖象的不完整、不對(duì)稱。在這里應(yīng)該要指導(dǎo)學(xué)生在列表時(shí),自變量x的取值可以選取絕對(duì)值相等而符號(hào)相反的數(shù),相應(yīng)的就得到絕對(duì)相等而符號(hào)相反的對(duì)應(yīng)的函數(shù)值,這樣可以簡(jiǎn)化計(jì)算的手續(xù),又便于在坐標(biāo)平面內(nèi)找到點(diǎn)。
(2)在“連線”這一環(huán)節(jié)
學(xué)生畫的點(diǎn)與點(diǎn)之間連線可能會(huì)有端點(diǎn),未能用光滑的線條連接。因而在這里要特別要強(qiáng)調(diào)在將所選取的點(diǎn)連結(jié)時(shí),應(yīng)該是“光滑曲線”,為以后學(xué)習(xí)二次函數(shù)的圖像打下基礎(chǔ)。為了使函數(shù)圖象清晰明顯,可以引導(dǎo)學(xué)生注意盡量選取較多的自變量x的值和對(duì)應(yīng)的函數(shù)值y,以便在坐標(biāo)平面內(nèi)得到較多的“點(diǎn)”,畫出曲線。
從而引導(dǎo)學(xué)生畫出正確的函數(shù)圖象。
。3)圖象與x軸或y軸相交
在這里我認(rèn)為可以埋下一個(gè)伏筆,給學(xué)生留下一個(gè)懸念,為后面學(xué)習(xí)函數(shù)的性質(zhì)打下基礎(chǔ)。
需要說(shuō)明的是:利用多媒體課件學(xué)習(xí)能吸引學(xué)生的注意力,引起學(xué)生進(jìn)一步學(xué)習(xí)的興趣。不過(guò),盡管多媒體的演示既快又準(zhǔn)確,我認(rèn)為在學(xué)生第學(xué)畫反比例函數(shù)圖象的過(guò)程中,老師還是應(yīng)該在黑板上認(rèn)真示范畫出圖象的每一個(gè)步驟,畢竟多媒體還是不能替代我們平時(shí)老師在黑板上板書。
鞏固練習(xí):畫出函數(shù)和的圖象
通過(guò)鞏固練習(xí),讓學(xué)生再次動(dòng)手畫出函數(shù)圖象,改正在初次畫圖象時(shí)出現(xiàn)在一些問題。老師使用函數(shù)圖象的課件,用屏幕顯示的函數(shù)圖象驗(yàn)證學(xué)生畫出的函數(shù)圖象的準(zhǔn)確性。
。ㄈ┨骄繉W(xué)習(xí)2——函數(shù)圖象性質(zhì)
1、圖象的分布情況
問題5:請(qǐng)大家回憶一下正比例函數(shù)的分布情況是怎么樣的呢?
提出問題5主要是起到鞏固復(fù)習(xí),為引導(dǎo)學(xué)生學(xué)習(xí)反比例函數(shù)圖象的分布情況打下基礎(chǔ)。
問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?
在這一環(huán)節(jié)中的設(shè)計(jì):
。1)引導(dǎo)學(xué)生對(duì)比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;
。2)充分運(yùn)用多媒體的優(yōu)勢(shì)進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過(guò)程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對(duì)比和探究。學(xué)生通過(guò)觀察及對(duì)比,對(duì)反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;
。3)組織小組討論來(lái)歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時(shí),函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
2、圖象的變化情況
問題7:正比例函數(shù)圖象的變化情況是怎么樣的呢?
提出問題7主要是起到鞏固復(fù)習(xí),為引導(dǎo)學(xué)生學(xué)習(xí)反比例函數(shù)圖象的變化情況打下基礎(chǔ)。
問題8:那反比例函數(shù)的圖象,是否也具有這樣的性質(zhì)呢?
在這一環(huán)節(jié)的教學(xué)設(shè)計(jì)是:
。1)回顧反比例函數(shù)和的圖象,通過(guò)實(shí)際觀察;
。2)根據(jù)解析式對(duì)x取值,比較x在取不同值時(shí)函數(shù)值的變化情況;
。3)電腦演示及學(xué)生小組討論,請(qǐng)學(xué)生給出結(jié)論。即這個(gè)問題必須分成兩種情況討論即當(dāng)k>0時(shí),自變量x逐漸增大時(shí),y的值則隨著逐漸減;當(dāng)k<0時(shí),自變量x逐漸增大時(shí),y的值也隨著逐漸增大。
。4)對(duì)于學(xué)生做出的結(jié)論,老師應(yīng)該要給予肯定,同時(shí)可以提出:有沒有同學(xué)需要補(bǔ)充的呢?若沒有,則可以舉例:當(dāng)k>0,分別比較在第三象限x=—2,第一象限x=2時(shí)的y的值的大小,則以上性質(zhì)是否依然成立?學(xué)生的回答應(yīng)該是:不成立。這時(shí)老師再請(qǐng)學(xué)生做小結(jié):必須限定在每一個(gè)象限內(nèi),才有以上性質(zhì)成立。
問題9:當(dāng)函數(shù)圖象的兩個(gè)分支無(wú)限延伸時(shí),它與x軸、y軸相交嗎?為什么?
在這個(gè)環(huán)節(jié)中,可以結(jié)合剛才學(xué)生所畫的錯(cuò)誤圖象,引導(dǎo)學(xué)生可以通過(guò)代數(shù)的方法分析反比例函數(shù)的解析式,由分母不能為零,得x不能為零。由k≠0,得y必不為零,從而驗(yàn)證了反比例函數(shù)的圖象。當(dāng)兩個(gè)分支無(wú)限延伸時(shí),可以無(wú)限地逼近x軸、y軸,但永遠(yuǎn)不會(huì)與兩軸相交。隨即強(qiáng)調(diào)畫圖時(shí)要注意準(zhǔn)確性。
。ㄋ模﹤溆盟伎碱}
1、反比例函數(shù)的圖象在第一、三象限,求a的取值范圍
2、
。1)當(dāng)m為何值時(shí),y是x的正比例函數(shù)
。2)當(dāng)m為何值時(shí),y是x的反比例函數(shù)
。ㄎ澹┬〗Y(jié)。
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 7
一、教學(xué)目標(biāo):
1.知識(shí)目標(biāo):
、倌軠(zhǔn)確理解絕對(duì)值的幾何意義和代數(shù)意義。
、谀軠(zhǔn)確熟練地求一個(gè)有理數(shù)的絕對(duì)值。
③使學(xué)生知道絕對(duì)值是一個(gè)非負(fù)數(shù),能更深刻地理解相反數(shù)的概念。
2.能力目標(biāo):
、俪醪脚囵B(yǎng)學(xué)生觀察、分析、歸納和概括的思維能力。
、诔醪脚囵B(yǎng)學(xué)生由抽象到具體再到抽象的思維能力。
3.情感目標(biāo):
、偻ㄟ^(guò)向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學(xué)生領(lǐng)略到數(shù)學(xué)的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^(guò)課堂上生動(dòng)、活潑和愉快、輕松地學(xué)習(xí),使學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂,從而增強(qiáng)他們的自信心。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):絕對(duì)值的幾何意義和代數(shù)意義,以及求一個(gè)數(shù)的絕對(duì)值。
教學(xué)難點(diǎn):絕對(duì)值定義的得出、意義的理解及求一個(gè)負(fù)數(shù)的絕對(duì)值。
三、教學(xué)方法
啟發(fā)引導(dǎo)式、討論式和談話法
四、教學(xué)過(guò)程
(一)復(fù)習(xí)提問
問題:相反數(shù)6與-6在數(shù)軸上與原點(diǎn)的距離各是多少??jī)蓚(gè)相反數(shù)在數(shù)軸上的點(diǎn)有什么特征?
。ǘ┬率
1.引入
結(jié)合教材P63圖2-11和復(fù)習(xí)問題,講解6與-6的絕對(duì)值的意義。
2.數(shù)a的絕對(duì)值的意義
、賻缀我饬x
一個(gè)數(shù)a的絕對(duì)值就是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離。數(shù)a的絕對(duì)值記作|a|.
舉例說(shuō)明數(shù)a的絕對(duì)值的幾何意義。(按教材P63的倒數(shù)第二段進(jìn)行講解。)
強(qiáng)調(diào):表示0的`點(diǎn)與原點(diǎn)的距離是0,所以|0|=0.
指出:表示“距離”的數(shù)是非負(fù)數(shù),所以絕對(duì)值是一個(gè)非負(fù)數(shù)。
、诖鷶(shù)意義
把有理數(shù)分成正數(shù)、零、負(fù)數(shù),根據(jù)絕對(duì)值的幾何意義可以得出絕對(duì)值的代數(shù)意義:一個(gè)正數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0.
用字母a表示數(shù),則絕對(duì)值的代數(shù)意義可以表示為:
指出:絕對(duì)值的代數(shù)定義可以作為求一個(gè)數(shù)的絕對(duì)值的方法。
3.例題精講
例1.求8,-8,-的絕對(duì)值。
按教材方法講解。
例2.計(jì)算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一個(gè)數(shù)的絕對(duì)值等于2,求這個(gè)數(shù)。
解:∵|2|=2|-2|=2
∴這個(gè)數(shù)是2或-2.
五、鞏固練習(xí)
練習(xí)一:教材P641、2,P66習(xí)題2.4A組1、2.
練習(xí)二:
1.絕對(duì)值小于4的整數(shù)是____.
2.絕對(duì)值最小的數(shù)是____.
3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。
六、歸納小結(jié)
本節(jié)課從幾何與代數(shù)兩個(gè)方面說(shuō)明了絕對(duì)值的意義,由絕對(duì)值的意義可知,任何數(shù)的絕對(duì)值都是非負(fù)數(shù)。絕對(duì)值的代數(shù)意義可以作為求一個(gè)數(shù)的絕對(duì)值的方法。
七、布置作業(yè)
教材P66習(xí)題2.4A組3、4、5.
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 8
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn):
使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用問題
。ǘ┠芰τ(xùn)練點(diǎn):
進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問題為數(shù)學(xué)問題的能力和分析問題解決問題的能力,培養(yǎng)用數(shù)學(xué)的意識(shí)
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):
會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用題
2.教學(xué)難點(diǎn):
找等量關(guān)系列一元二次方程解應(yīng)用題時(shí),應(yīng)注意是方程的解,但不一定符合題意,因此求解后一定要檢驗(yàn),以確定適合題意的解.例如線段的長(zhǎng)度不為負(fù)值,人的個(gè)數(shù)不能為分?jǐn)?shù)等
三、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
。ǘ┱w感知
。ㄈ┲攸c(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問
。1)列方程解應(yīng)用題的'步驟?
。2)長(zhǎng)方形的周長(zhǎng)、面積?長(zhǎng)方體的體積?
2.例1?現(xiàn)有長(zhǎng)方形紙片一張,長(zhǎng)19cm,寬15cm,需要剪去邊長(zhǎng)是多少的小正方形才能做成底面積為77cm2的無(wú)蓋長(zhǎng)方體型的紙盒?
解:設(shè)需要剪去的小正方形邊長(zhǎng)為xcm,則盒底面長(zhǎng)方形的長(zhǎng)為(19—2x)cm,寬為(15—2x)cm,
據(jù)題意:(19—2x)(15—2x)=77
整理后,得x2—17x+52=0,
解得x1=4,x2=13
∴當(dāng)x=13時(shí),15—2x=—11(不合題意,舍去)
答:截取的小正方形邊長(zhǎng)應(yīng)為4cm,可制成符合要求的無(wú)蓋盒子
練習(xí)1章節(jié)前引例.
學(xué)生筆答、板書、評(píng)價(jià)
練習(xí)2教材P。42中4
學(xué)生筆答、板書、評(píng)價(jià)
注意:全面積=各部分面積之和
剩余面積=原面積—截取面積
例2要做一個(gè)容積為750cm3,高是6cm,底面的長(zhǎng)比寬多5cm的長(zhǎng)方形匣子,底面的長(zhǎng)及寬應(yīng)該各是多少(精確到0.1cm)?
分析:底面的長(zhǎng)和寬均可用含未知數(shù)的代數(shù)式表示,則長(zhǎng)×寬×高=體積,這樣便可得到含有未知數(shù)的等式——方程
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
據(jù)題意,6x(x+5)=750,
整理后,得x2+5x—125=0
解這個(gè)方程x1=9.0,x2=—14.0(不合題意,舍去)
當(dāng)x=9.0時(shí),x+17=26.0,x+12=21.0.
答:可以選用寬為21cm,長(zhǎng)為26cm的長(zhǎng)方形鐵皮
教師引導(dǎo),學(xué)生板書,筆答,評(píng)價(jià)
。ㄋ模┛偨Y(jié)、擴(kuò)展
1.有關(guān)面積和體積的應(yīng)用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關(guān)系
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問題,例如線段的長(zhǎng)不能為負(fù)
3.進(jìn)一步體會(huì)數(shù)字在實(shí)踐中的應(yīng)用,培養(yǎng)學(xué)生分析問題、解決問題的能力
四、布置作業(yè)
教材P42中A3、6、7
教材P41中3、4
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 9
教學(xué)目標(biāo)
1.知識(shí)與技能
能運(yùn)用運(yùn)算律探究去括號(hào)法則,并且利用去括號(hào)法則將整式化簡(jiǎn).
2.過(guò)程與方法
經(jīng)歷類比帶有括號(hào)的有理數(shù)的運(yùn)算,發(fā)現(xiàn)去括號(hào)時(shí)的符號(hào)變化的規(guī)律,歸納出去括號(hào)法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.
3.情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生主動(dòng)探究、合作交流的意識(shí),嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):去括號(hào)法則,準(zhǔn)確應(yīng)用法則將整式化簡(jiǎn).
2.難點(diǎn):括號(hào)前面是“-”號(hào)去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)變號(hào)容易產(chǎn)生錯(cuò)誤.
3.關(guān)鍵:準(zhǔn)確理解去括號(hào)法則.
教具準(zhǔn)備
投影儀.
教學(xué)過(guò)程
一、新授
利用合并同類項(xiàng)可以把一個(gè)多項(xiàng)式化簡(jiǎn),在實(shí)際問題中,往往列出的式子含有括號(hào),那么該怎樣化簡(jiǎn)呢?
現(xiàn)在我們來(lái)看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過(guò)凍土地段要t小時(shí),那么它通過(guò)非凍土地段的時(shí)間為(t-0.5)小時(shí),于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長(zhǎng)為
100t+120(t-0.5)千米①
凍土地段與非凍土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都帶有括號(hào),它們應(yīng)如何化簡(jiǎn)?
思路點(diǎn)撥:教師引導(dǎo),啟發(fā)學(xué)生類比數(shù)的運(yùn)算,利用分配律.學(xué)生練習(xí)、交流后,教師歸納:
利用分配律,可以去括號(hào),合并同類項(xiàng),得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我們知道,化簡(jiǎn)帶有括號(hào)的整式,首先應(yīng)先去括號(hào).
上面兩式去括號(hào)部分變形分別為:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比較③、④兩式,你能發(fā)現(xiàn)去括號(hào)時(shí)符號(hào)變化的規(guī)律嗎?
思路點(diǎn)撥:鼓勵(lì)學(xué)生通過(guò)觀察,試用自己的語(yǔ)言敘述去括號(hào)法則,然后教師板書(或用屏幕)展示:
如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的.符號(hào)與原來(lái)的符號(hào)相同;
如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來(lái)的符號(hào)相反.
特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).
利用分配律,可以將式子中的括號(hào)去掉,得:
+(x-3)=x-3(括號(hào)沒了,括號(hào)內(nèi)的每一項(xiàng)都沒有變號(hào))
-(x-3)=-x+3(括號(hào)沒了,括號(hào)內(nèi)的每一項(xiàng)都改變了符號(hào))
去括號(hào)規(guī)律要準(zhǔn)確理解,去括號(hào)應(yīng)對(duì)括號(hào)的每一項(xiàng)的符號(hào)都予考慮,做到要變都變;要不變,則誰(shuí)也不變;另外,括號(hào)內(nèi)原有幾項(xiàng)去掉括號(hào)后仍有幾項(xiàng).
二、范例學(xué)習(xí)
例1.化簡(jiǎn)下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路點(diǎn)撥:講解時(shí),先讓學(xué)生判定是哪種類型的去括號(hào),去括號(hào)后,要不要變號(hào),括號(hào)內(nèi)的每一項(xiàng)原來(lái)是什么符號(hào)?去括號(hào)時(shí),要同時(shí)去掉括號(hào)前的符號(hào).為了防止錯(cuò)誤,題(2)中-3(a2-2b),先把3乘到括號(hào)內(nèi),然后再去括號(hào).
解答過(guò)程按課本,可由學(xué)生口述,教師板書.
例2.兩船從同一港口同時(shí)出發(fā)反向而行,甲船順?biāo),乙船逆水?兩船在靜水中的速度都是50千米/時(shí),水流速度是a千米/時(shí).
(1)2小時(shí)后兩船相距多遠(yuǎn)?
(2)2小時(shí)后甲船比乙船多航行多少千米?
教師操作投影儀,展示例2,學(xué)生思考、小組交流,尋求解答思路.
思路點(diǎn)撥:根據(jù)船順?biāo)叫械乃俣?船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時(shí),乙船速度為(50-a)千米/時(shí),2小時(shí)后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時(shí)出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.
解答過(guò)程按課本.
去括號(hào)時(shí)強(qiáng)調(diào):括號(hào)內(nèi)每一項(xiàng)都要乘以2,括號(hào)前是負(fù)因數(shù)時(shí),去掉括號(hào)后,括號(hào)內(nèi)每一項(xiàng)都要變號(hào).為了防止出錯(cuò),可以先用分配律將數(shù)字2與括號(hào)內(nèi)的各項(xiàng)相乘,然后再去括號(hào),熟練后,再省去這一步,直接去括號(hào).
三、鞏固練習(xí)
1.課本第68頁(yè)練習(xí)1、2題.
2.計(jì)算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路點(diǎn)撥:一般地,先去小括號(hào),再去中括號(hào).
四、課堂小結(jié)
去括號(hào)是代數(shù)式變形中的一種常用方法,去括號(hào)時(shí),特別是括號(hào)前面是“-”號(hào)時(shí),括號(hào)連同括號(hào)前面的“-”號(hào)去掉,括號(hào)里的各項(xiàng)都改變符號(hào).去括號(hào)規(guī)律可以簡(jiǎn)單記為“-”變“+”不變,要變?nèi)甲?當(dāng)括號(hào)前帶有數(shù)字因數(shù)時(shí),這個(gè)數(shù)字要乘以括號(hào)內(nèi)的每一項(xiàng),切勿漏乘某些項(xiàng).
五、作業(yè)布置
1.課本第71頁(yè)習(xí)題2.2第2、3、5、8題.
2.選用課時(shí)作業(yè)設(shè)計(jì).
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 10
【教學(xué)目標(biāo)】
1、掌握多邊形的內(nèi)角和的計(jì)算方法,并能用內(nèi)角和知識(shí)解決一些簡(jiǎn)單的問題。
2、經(jīng)歷探索多邊形內(nèi)角和計(jì)算公式的過(guò)程,體會(huì)如何探索研究問題。
3、通過(guò)將多邊形"分割"為三角形的過(guò)程體驗(yàn),初步認(rèn)識(shí)"轉(zhuǎn)化"的數(shù)學(xué)思想。
【教學(xué)重點(diǎn)與教學(xué)難點(diǎn)】
1、重點(diǎn):多邊形的內(nèi)角和公式。
2、難點(diǎn):多邊形內(nèi)角和的推導(dǎo)。
3、關(guān)鍵:。多邊形"分割"為三角形。
【教具準(zhǔn)備】
三角板、卡紙
【教學(xué)過(guò)程】
一、創(chuàng)設(shè)情景,揭示問題
1、在一次數(shù)學(xué)基礎(chǔ)知識(shí)搶答賽中,老師出了這么一個(gè)問題,一個(gè)五邊形的所有角相加等于多少度?一個(gè)學(xué)生馬上能回答,你們能嗎?
2、教具演示:將一個(gè)五邊形沿對(duì)角線剪開,能分割成幾個(gè)三角形?
你能說(shuō)出五邊形的內(nèi)角和是多少度嗎?(點(diǎn)題)意圖:利用搶答問題和教具演示,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣和注意力
二、探索研究學(xué)會(huì)新知
1、回顧舊知,引出問題:
。1)三角形的內(nèi)角和等于_________。外角和等于____________
。2)長(zhǎng)方形的內(nèi)角和等于_____,正方形的內(nèi)角和等于__________。
2、探索四邊形的內(nèi)角和:
。1)學(xué)生思考,同學(xué)討論交流。
。2)學(xué)生敘述對(duì)四邊形內(nèi)角和的'認(rèn)識(shí)(第一二組通過(guò)測(cè)量相加,第三四組通過(guò)畫對(duì)角線分成兩個(gè)三角形。)回顧三角形,正方形,長(zhǎng)方形內(nèi)角和,使學(xué)生對(duì)新問題進(jìn)行思考與猜想。以四邊形的內(nèi)角和作為探索多邊形的。突破口。
。3)引導(dǎo)學(xué)生用"分割法"探索四邊形的內(nèi)角和:
方法一:連接一條對(duì)角線,分成2個(gè)三角形:
180°+180°=360°
從簡(jiǎn)單的思維方式發(fā)散學(xué)生的想象力達(dá)到"分割"問題,并讓學(xué)生發(fā)現(xiàn)問題,解決問題教學(xué)步驟教學(xué)內(nèi)容備注方法二:在四邊形內(nèi)部任取一點(diǎn),與頂點(diǎn)連接組成4個(gè)三角形。
180°×4-360°=360°
3、探索多邊形內(nèi)角和的問題,提出階梯式的問題:
你能嘗試用上面的方法一求出五邊形的內(nèi)角和嗎?(第一二組)
你能嘗試用上面的方法一求出六邊形的內(nèi)角和嗎?(第三,四組)那么n邊形呢?完成后填表:
n邊形3456.。.n分成三角形的個(gè)數(shù)1234.。.n—2內(nèi)角和。.。.
4、及時(shí)運(yùn)用,掌握新知:
。1)一個(gè)八邊形的內(nèi)角和是_____________度
。2)一個(gè)多邊形的內(nèi)角和是720度,這個(gè)多邊形是_____邊形
。3)一個(gè)正五邊形的每一個(gè)內(nèi)角是________,那么正六邊形的每個(gè)內(nèi)角是_________
通過(guò)學(xué)生動(dòng)手去用分割法求五(六)邊形的內(nèi)角和,從簡(jiǎn)單到復(fù)雜,從而歸納出n邊形的內(nèi)角和。
三、點(diǎn)例透析
運(yùn)用新知例題:想一想:如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系呢?
四、應(yīng)用訓(xùn)練強(qiáng)化理解
4、第83頁(yè)練習(xí)1和2多邊形內(nèi)角和定理的應(yīng)用
五、知識(shí)回放
課堂小結(jié)提問方式:本節(jié)課我們學(xué)習(xí)了什么?
1、多邊形內(nèi)角和公式。
2、多邊形內(nèi)角和計(jì)算是通過(guò)轉(zhuǎn)化為三角形。
六、作業(yè)練習(xí)
1、書面作業(yè):
2、課外練習(xí):
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 11
一、教學(xué)目標(biāo)
1.使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題;
2.培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的能力;
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣。
二、教學(xué)重點(diǎn)和難點(diǎn)
一元一次方程解簡(jiǎn)單的應(yīng)用題的方法和步驟。
三、課堂教學(xué)過(guò)程設(shè)計(jì)
。ㄒ唬⿵膶W(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實(shí)際問題的有關(guān)知識(shí),那么,一個(gè)實(shí)際問題能否應(yīng)用一元一次方程來(lái)解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個(gè)問題,我們來(lái)看下面這個(gè)例題。
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
。ㄊ紫,用算術(shù)方法解,由學(xué)生回答,教師板書)
解法1:(4+2)÷(3-1)=3。
答:某數(shù)為3。
。ㄆ浯,用代數(shù)方法來(lái)解,教師引導(dǎo),學(xué)生口述完成)
解法2:設(shè)某數(shù)為x,則有3x-2=x+4。
解之,得x=3。
答:某數(shù)為3。
縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過(guò)解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一。
我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系。因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程。
本節(jié)課,我們就通過(guò)實(shí)例來(lái)說(shuō)明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。
。ǘ⿴熒餐治、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟
例2 某面粉倉(cāng)庫(kù)存放的面粉運(yùn)出15%后,還剩余42500千克,這個(gè)倉(cāng)庫(kù)原來(lái)有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來(lái)重量-運(yùn)出重量=剩余重量)
3.若設(shè)原來(lái)面粉有x千克,則運(yùn)出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?
上述分析過(guò)程可列表如下:
解:設(shè)原來(lái)有x千克面粉,那么運(yùn)出了15%x千克,由題意,得
x-15%x=42 500,
所以x=50 000。
答:原來(lái)有50 000千克面粉。
此時(shí),讓學(xué)生討論:本題的.相等關(guān)系除了上述表達(dá)形式以外,是否還有其他表達(dá)形式?若有,是什么?
。ㄟ有,原來(lái)重量=運(yùn)出重量+剩余重量;原來(lái)重量-剩余重量=運(yùn)出重量)
教師應(yīng)指出:
。1)這兩種相等關(guān)系的表達(dá)形式與“原來(lái)重量-運(yùn)出重量=剩余重量”,雖形式上不同,但實(shí)質(zhì)是一樣的,可以任意選擇其中的一個(gè)相等關(guān)系來(lái)列方程;
。2)例2的解方程過(guò)程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿。
依據(jù)例2的分析與解答過(guò)程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
。1)仔細(xì)審題,透徹理解題意。即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個(gè)合理未知數(shù);
。2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系。(這是關(guān)鍵一步);
。3)根據(jù)相等關(guān)系,正確列出方程.即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個(gè)條件重復(fù)利用等;
。4)求出所列方程的解;
。5)檢驗(yàn)后明確地、完整地寫出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義。
例3 (投影)初一2班第一小組同學(xué)去蘋果園參加勞動(dòng),休息時(shí)工人師傅摘蘋果分給同學(xué),若每人3個(gè)還剩余9個(gè);若每人5個(gè)還有一個(gè)人分4個(gè),試問第一小組有多少學(xué)生,共摘了多少個(gè)蘋果?
。ǚ抡绽2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過(guò)程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤。并嚴(yán)格規(guī)范書寫格式。)
解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得
3x+9=5x-(5-4),
解這個(gè)方程:2x=10,
所以x=5。
其蘋果數(shù)為3× 5+9=24。
答:第一小組有5名同學(xué),共摘蘋果24個(gè)。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程。
(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)
。ㄈ┱n堂練習(xí)
1.買4本練習(xí)本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習(xí)本每本多少元?
2.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款達(dá)到3 802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元。求1978年末的儲(chǔ)蓄存款。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。
。ㄋ模⿴熒餐〗Y(jié)
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
2.列一元一次方程解應(yīng)用題的方法和步驟是什么?
3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?
依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
。1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選擇變數(shù);找出相等關(guān)系;布列方程求解;檢驗(yàn)書寫答案.其中第三步是關(guān)鍵;
。2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶。
(五)作業(yè)
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?
3.某廠去年10月份生產(chǎn)電視機(jī)2050臺(tái),這比前年10月產(chǎn)量的2倍還多150臺(tái)。這家工廠前年10月生產(chǎn)電視機(jī)多少臺(tái)?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個(gè)同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個(gè)小箱子里裝有洗衣粉多少千克?
5.把1400獎(jiǎng)金分給22名得獎(jiǎng)?wù),一等?jiǎng)每人200元,二等獎(jiǎng)每人50元。求得到一等獎(jiǎng)與二等獎(jiǎng)的人數(shù)。
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 12
教學(xué)目標(biāo):
1、進(jìn)一步理解函數(shù)的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會(huì)求函數(shù)值,并體會(huì)自變量與函數(shù)值間的對(duì)應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.
5、通過(guò)函數(shù)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的是有規(guī)律地運(yùn)動(dòng)變化著的
教學(xué)重點(diǎn):
了解函數(shù)的意義,會(huì)求自變量的取值范圍及求函數(shù)值.
教學(xué)難點(diǎn):
函數(shù)概念的抽象性.
教學(xué)過(guò)程:
。ㄒ唬┮胄抡n:
上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).
生活中有很多實(shí)例反映了函數(shù)關(guān)系,你能舉出一個(gè),并指出式中的自變量與函數(shù)嗎?
1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.
2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買100元的小禮物送給同學(xué),求所能購(gòu)買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.
解:1、y=30n
y是函數(shù),n是自變量
2、n是函數(shù),a是自變量.
。ǘ┲v授新課
剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的這種用數(shù)學(xué)式子表示函數(shù)時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列函數(shù)中自變量x的取值范圍.
。1)(2)
。3)(4)
。5)(6)
分析:在(1)、(2)中,x取任意實(shí)數(shù),與都有意義.
。3)小題的是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
第(5)小題,是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零.的被開方數(shù)是.
同理,第(6)小題也是二次根式,是被開方數(shù),
小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成或.在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過(guò)來(lái)用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說(shuō)明這里與是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.
例2、自行車保管站在某個(gè)星期日保管的自行車共有3500輛次,其中變速車保管費(fèi)是每輛一次0.5元,一般車保管費(fèi)是每次一輛0.3元.
。1)若設(shè)一般車停放的輛次數(shù)為x,總的保管費(fèi)收入為y元,試寫出y關(guān)于x的函數(shù)關(guān)系式;
。2)若估計(jì)前來(lái)停放的3500輛次自行車中,變速車的`輛次不小于25%,但不大于40%,試求該保管站這個(gè)星期日收入保管費(fèi)總數(shù)的范圍.
解:(1)
。▁是正整數(shù),
。2)若變速車的輛次不小于25%,但不大于40%,
則收入在1225元至1330元之間
總結(jié):對(duì)于反映實(shí)際問題的函數(shù)關(guān)系,應(yīng)使得實(shí)際問題有意義.這樣,就要求聯(lián)系實(shí)際,具體問題具體分析.
對(duì)于函數(shù),當(dāng)自變量時(shí),相應(yīng)的函數(shù)y的值是.60叫做這個(gè)函數(shù)當(dāng)時(shí)的函數(shù)值.
例3、求下列函數(shù)當(dāng)時(shí)的函數(shù)值:
。1)————(2)—————
。3)————(4)——————
注:本例既鍛煉了學(xué)生的計(jì)算能力,又創(chuàng)設(shè)了情境,讓學(xué)生體會(huì)對(duì)于x的每一個(gè)值,y都有唯一確定的值與之對(duì)應(yīng).以此加深對(duì)函數(shù)的理解.
。ǘ┬〗Y(jié):
這節(jié)課,我們進(jìn)一步地研究了有關(guān)函數(shù)的概念.在研究函數(shù)關(guān)系時(shí)首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值.另外,對(duì)于反映實(shí)際問題的函數(shù)關(guān)系,要具體問題具體分析.
作業(yè):習(xí)題13.2A組2、3、5
今天的內(nèi)容就介紹到這里了。
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 13
[教學(xué)目標(biāo)]
1、體會(huì)并了解反比例函數(shù)的圖象的意義
2、能列表、描點(diǎn)、連線法畫出反比例函數(shù)的圖象
3、通過(guò)反比例函數(shù)的圖象的分析,探索并掌握反比例函數(shù)的圖象的性質(zhì)
[教學(xué)重點(diǎn)和難點(diǎn)]
本節(jié)教學(xué)的重點(diǎn)是反比例函數(shù)的圖象及圖象的性質(zhì)
由于反比例函數(shù)的圖象分兩支,給畫圖帶來(lái)了復(fù)雜性是本節(jié)教學(xué)的難點(diǎn)
[教學(xué)過(guò)程]
1、情境創(chuàng)設(shè)
可以從復(fù)習(xí)一次函數(shù)的圖象開始:你還記得一次函數(shù)的圖象嗎?在回憶與交流中,進(jìn)一步認(rèn)識(shí)函數(shù)圖象的直觀有助于理解函數(shù)的性質(zhì)。轉(zhuǎn)而導(dǎo)人關(guān)注新的函數(shù)——反比例函數(shù)的圖象研究:反比例函數(shù)的圖象又會(huì)是什么樣子呢?
2、探索活動(dòng)
探索活動(dòng)1反比例函數(shù)y?
由于反比例函數(shù)y?
要分幾個(gè)層次來(lái)探求:
。1)可以先估計(jì)——例如:位置(圖象所在象限、圖象與坐標(biāo)軸的交點(diǎn)等)、趨勢(shì)(上升、下降等);
。2)方法與步驟——利用描點(diǎn)作圖;
列表:取自變量x的哪些值?——x是不為零的任何實(shí)數(shù),所以不能取x的'值的為零,但仍可以以零為基準(zhǔn),左右均勻,對(duì)稱地取值。
描點(diǎn):依據(jù)什么(數(shù)據(jù)、方法)找點(diǎn)?
連線:怎樣連線?——可在各個(gè)象限內(nèi)按照自變量從小到大的順序用兩條光滑的曲線把所描的點(diǎn)連接起來(lái)。
探索活動(dòng)2反比例函數(shù)y??2的圖象。x2的圖象是曲線型的,且分成兩支。對(duì)此,學(xué)生第一次接觸有一定的難度,因此需x2的圖象。x
可以引導(dǎo)學(xué)生采用多種方式進(jìn)行自主探索活動(dòng):
2的圖象的方式與步驟進(jìn)行自主探索其圖象;x
222(2)可以通過(guò)探索函數(shù)y?與y??之間的關(guān)系,畫出y??的圖象。__
22探索活動(dòng)3反比例函數(shù)y??與y?的圖象有什么共同特征?__(1)可以用畫反比例函數(shù)y?
引導(dǎo)學(xué)生從通過(guò)與一次函數(shù)的圖象的對(duì)比感受反比例函數(shù)圖象“曲線”及“兩支”的特征。(即雙曲線)反比例函數(shù)y?
k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當(dāng)k?0時(shí),圖象在第一、第x
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 14
教學(xué)目標(biāo):
。1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
。2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點(diǎn)難點(diǎn):
能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
教學(xué)過(guò)程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長(zhǎng)為xm,先取x的一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,
對(duì)于1.,可讓學(xué)生根據(jù)表中給出的AB的長(zhǎng),填出相應(yīng)的BC的長(zhǎng)和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對(duì)前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識(shí):當(dāng)AB的長(zhǎng)為5cm,BC的長(zhǎng)為10m時(shí),圍成的矩形面積最大;最大面積為50m2。 對(duì)于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識(shí),x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對(duì)于3,教師可提出問題,(1)當(dāng)AB=xm時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.
二、提出問題
某商店將每件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過(guò)降低售價(jià)、增加銷售量的辦法來(lái)提高利潤(rùn),經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤(rùn)最大? 在這個(gè)問題中,可提出如下問題供學(xué)生思考并回答:
1.商品的利潤(rùn)與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?
[利潤(rùn)=(售價(jià)-進(jìn)價(jià))×銷售量]
2.如果不降低售價(jià),該商品每件利潤(rùn)是多少元?一天總的利潤(rùn)是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價(jià)x元,則每件商品的.利潤(rùn)是多少元?一天可銷
售約多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,
[x的值不能任意取,其范圍是0≤x≤2]
5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x(0<x<10)……………………………(1) 將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;
(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?
(各有1個(gè))
(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式? (分別是二次多項(xiàng)式)
(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?
(都是用自變量的二次多項(xiàng)式來(lái)表示的)
(4)本章導(dǎo)圖中的問題以及P1頁(yè)的問題2有什么共同特點(diǎn)? 讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
四、課堂練習(xí)
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習(xí)第1,2題。
五、小結(jié)
1.請(qǐng)敘述二次函數(shù)的定義.
2,許多實(shí)際問題可以轉(zhuǎn)化為二次函數(shù)來(lái)解決,請(qǐng)你聯(lián)系生活實(shí)際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。
六、作業(yè):略
初中數(shù)學(xué)教學(xué)設(shè)計(jì) 15
教學(xué)目標(biāo)
(1)認(rèn)知目標(biāo)
理解并掌握分式的乘除法法則,能進(jìn)行簡(jiǎn)單的分式乘除法運(yùn)算,能解決一些與分式乘除有關(guān)的實(shí)際問題。
。2)技能目標(biāo)
經(jīng)歷從分?jǐn)?shù)的乘除法運(yùn)算到分式的乘除法運(yùn)算的過(guò)程,培養(yǎng)學(xué)生類比的探究能力,加深對(duì)從特殊到一般數(shù)學(xué)的思想認(rèn)識(shí)。
。3)情感態(tài)度與價(jià)值觀
教學(xué)中讓學(xué)生在主動(dòng)探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識(shí)的同時(shí)感受探索的樂趣和成功的體驗(yàn)。
教學(xué)重難點(diǎn)
重點(diǎn):運(yùn)用分式的乘除法法則進(jìn)行運(yùn)算。
難點(diǎn):分子、分母為多項(xiàng)式的分式乘除運(yùn)算。
教學(xué)過(guò)程
。ㄒ唬┨岢鰡栴},引入課題
俗話說(shuō):“好的開端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實(shí)際出發(fā)提出現(xiàn)實(shí)生活中的問題:
問題1:求容積的高是,(引出分式乘法的學(xué)習(xí)需要)。
問題2:求大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。
從實(shí)際出發(fā),引出分式的乘除的實(shí)在存在意義,讓學(xué)生感知學(xué)習(xí)分式的乘法和除法的實(shí)際需要,從而激發(fā)學(xué)生興趣和求知欲。
。ǘ╊惐嚷(lián)想,探究新知
從學(xué)生熟悉的分?jǐn)?shù)的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。
解后總結(jié)概括:
。1)式是什么運(yùn)算?依據(jù)是什么?
。2)式又是什么運(yùn)算?依據(jù)是什么?能說(shuō)出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo),學(xué)生應(yīng)該能說(shuō)出依據(jù)的是:分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分?jǐn)?shù)的'乘除法則,猜想出分式的乘除法則。
。ǚ质降某顺ǚ▌t)
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
。ㄈ├}分析,應(yīng)用新知
師生活動(dòng):教師參與并指導(dǎo),學(xué)生獨(dú)立思考,并嘗試完成例題。
P11的例1,在例題分析過(guò)程中,為了突出重點(diǎn),應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。P11例2是分子、分母為多單項(xiàng)式的分式乘除法則的運(yùn)用,為了突破本節(jié)課的難點(diǎn)我采取板演的形式,和學(xué)生一起詳細(xì)分析,提醒學(xué)生關(guān)注易錯(cuò)易漏的環(huán)節(jié),學(xué)會(huì)解題的方法。
。ㄋ模┚毩(xí)鞏固,培養(yǎng)能力
P13練習(xí)第2題的(1)、(3)、(4)與第3題的(2)。
師生活動(dòng):教師出示問題,學(xué)生獨(dú)立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過(guò)程。
通過(guò)這一環(huán)節(jié),主要是為了通過(guò)課堂跟蹤反饋,達(dá)到鞏固提高的目的,進(jìn)一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。
。ㄎ澹┱n堂小結(jié),回扣目標(biāo)
引導(dǎo)學(xué)生自主進(jìn)行課堂小結(jié):
1、本節(jié)課我們學(xué)習(xí)了哪些知識(shí)?
2、在知識(shí)應(yīng)用過(guò)程中需要注意什么?
3、你有什么收獲呢?
師生活動(dòng):學(xué)生反思,提出疑問,集體交流。
。┎贾米鳂I(yè)
教科書習(xí)題6.2第1、2(必做)練習(xí)冊(cè)P(選做),我設(shè)計(jì)了必做題和選做題,必做題是對(duì)本節(jié)課內(nèi)容的一個(gè)反饋,選做題是對(duì)本節(jié)課知識(shí)的一個(gè)延伸。
【初中數(shù)學(xué)教學(xué)設(shè)計(jì)】相關(guān)文章:
初中數(shù)學(xué)教學(xué)設(shè)計(jì)09-03
初中數(shù)學(xué)教學(xué)設(shè)計(jì)09-20
初中數(shù)學(xué)的教學(xué)設(shè)計(jì)07-24
初中數(shù)學(xué)的教學(xué)設(shè)計(jì)理念08-26
最新初中數(shù)學(xué)教學(xué)設(shè)計(jì)精選06-28
初中數(shù)學(xué)教學(xué)設(shè)計(jì)教案09-26
優(yōu)秀教學(xué)設(shè)計(jì)初中數(shù)學(xué)11-02
初中數(shù)學(xué)教學(xué)設(shè)計(jì)意圖07-25