欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

期末考試

高青縣高二數(shù)學(xué)上期末試卷及答案

時(shí)間:2025-01-11 15:29:57 麗薇 期末考試 我要投稿
  • 相關(guān)推薦

高青縣高二數(shù)學(xué)上期末試卷及答案

  無(wú)論是在學(xué)習(xí)還是在工作中,我們經(jīng)常接觸到試卷,經(jīng)過(guò)半個(gè)學(xué)期的學(xué)習(xí),究竟學(xué)到了什么?需要試卷來(lái)幫我們檢驗(yàn)。大家知道什么樣的試卷才是好試卷嗎?以下是小編幫大家整理的高青縣高二數(shù)學(xué)上期末試卷及答案,僅供參考,大家一起來(lái)看看吧。

高青縣高二數(shù)學(xué)上期末試卷及答案

  高青縣高二數(shù)學(xué)上期末試卷及答案 1

  一、選擇題(共10小題,每小題5分,滿分50分)

  1.準(zhǔn)線為x=﹣2的拋物線的標(biāo)準(zhǔn)方程為(  )

  A.y2=﹣8x B.y2=8x C.x2=8y D.x2=﹣8y

  2.設(shè)x∈R,則x>e的一個(gè)必要不充分條件是(  )

  A.x>1 B.x<1 c.x="">3 D.x<3

  【考點(diǎn)】必要條件.

  【專題】規(guī)律型.

  【分析】根據(jù)必要不充分的定義即可得到結(jié)論.

  【解答】解:當(dāng)x>1時(shí),滿足條件.

  x<1是x>e的既不必要也不充分條件.

  x>3是x>e的充分不必要條件.

  x<3是x>e的既不必要也不充分條件.

  故選:A.

  【點(diǎn)評(píng)】本題主要考查充分條件和必要條件的應(yīng)用,利用定義是解決本題的關(guān)鍵,比較基礎(chǔ).

  3.不等式ax2+bx﹣2≥0的解集為 ,則實(shí)數(shù)a,b的值為(  )

  A.a=﹣8,b=﹣10 B.a=﹣1,b=9 C.a=﹣4,b=﹣9 D.a=﹣1,b=2

  【考點(diǎn)】一元二次不等式的解法.

  【專題】不等式的解法及應(yīng)用.

  【分析】由不等式ax2+bx﹣2≥0的解集為 ,可得 解出即可.

  【解答】解:∵不等式ax2+bx﹣2≥0的解集為 ,

  ∴

  解得a=﹣4,b=﹣9.

  故選:C.

  【點(diǎn)評(píng)】本題考查了一元二次不等式的解法,屬于基礎(chǔ)題.

  4.已知函數(shù)f(x)=(x﹣3)ex,則f′(0)=(  )

  A.2 B.﹣2 C.3 D. 4

  【考點(diǎn)】導(dǎo)數(shù)的運(yùn)算.

  【專題】導(dǎo)數(shù)的綜合應(yīng)用.

  【分析】根據(jù)函數(shù)的導(dǎo)數(shù)公式直接進(jìn)行求導(dǎo),然后即可求f(0)的值.

  【解答】解:∵f(x)=(x﹣3)ex,

  ∴f(x)=ex+(x﹣3)ex=(x﹣2)ex,

  ∴f(0)=(0﹣2)e0=﹣2,

  故選:B.

  【點(diǎn)評(píng)】本題主要考查導(dǎo)數(shù)的計(jì)算,要求熟練掌握常見(jiàn)函數(shù)的導(dǎo)數(shù)公式以及導(dǎo)數(shù)的運(yùn)算法則,比較基礎(chǔ).

  5.首項(xiàng)a1>0的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5=S12,則Sn取得最大值時(shí)n的值為(  )

  A.7 B.8或9 C.8 D.10

  【考點(diǎn)】等差數(shù)列的'前n項(xiàng)和.

  【專題】等差數(shù)列與等比數(shù)列.

  【分析】由已知條件利用等差數(shù)列前n項(xiàng)和公式求出a1=﹣8d,再結(jié)合題設(shè)條件推導(dǎo)出Sn= ,由此利用二次函數(shù)的對(duì)稱性能求出結(jié)果.

  【解答】解:∵首項(xiàng)a1>0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S5=S12,

  ∴ ,

  解得a1=﹣8d,

  ∵a1>0,

  ∴d<0,

  ∴

  = ,

  ∵d<0,

  ∴Sn是一個(gè)關(guān)于n的開口向下的拋物線,

  ∵S5=S12,

  ∴由二次函數(shù)的對(duì)稱性知:

  當(dāng) ,即n=8或n=9時(shí),Sn取得最大值.

  故選B.

  【點(diǎn)評(píng)】本題考查等差數(shù)列的前n項(xiàng)和公式的應(yīng)用,解題時(shí)要注意二次函數(shù)性質(zhì)的合理運(yùn)用,是中檔題.

  6.橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn),恰好是含60°角的菱形的四個(gè)頂點(diǎn),則橢圓的離心率為(  )

  A. B. C. 或 D. 或

  【考點(diǎn)】橢圓的簡(jiǎn)單性質(zhì).

  【專題】分類討論;分析法;圓錐曲線的定義、性質(zhì)與方程.

  【分析】由題意可得tan30°= ,或tan60°= ,再由a,b,c的關(guān)系和離心率公式,計(jì)算即可得到所求值.

  【解答】解:由于橢圓的兩個(gè)焦點(diǎn)和短軸兩個(gè)頂點(diǎn),

  是一個(gè)含60°角的菱形的四個(gè)頂點(diǎn),

  則tan30°= ,或tan60°= ,

  當(dāng) = 時(shí),即b= c,即有a= =2c,

  由e= = ;

  當(dāng) = 時(shí),即b= c,即有a= = c,

  由e= = .

  可得離心率為 或 .

  故選:C.

  【點(diǎn)評(píng)】本題考查橢圓的標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,運(yùn)用分類討論的思想方法是解題的關(guān)鍵.

  7.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a5a6+a4a7=18,則log3a1+log3a2+…log3a10=(  )

  A.12 B.10 C.8 D.2+log35

  【考點(diǎn)】等比數(shù)列的性質(zhì);對(duì)數(shù)的運(yùn)算性質(zhì).

  【專題】計(jì)算題.

  【分析】先根據(jù)等比中項(xiàng)的性質(zhì)可知a5a6=a4a7,進(jìn)而根據(jù)a5a6+a4a7=18,求得a5a6的值,最后根據(jù)等比數(shù)列的性質(zhì)求得log3a1+log3a2+…log3a10=log3(a5a6)5答案可得.

  【解答】解:∵a5a6=a4a7,

  ∴a5a6+a4a7=2a5a6=18

  ∴a5a6=9

  ∴l(xiāng)og3a1+log3a2+…log3a10=log3(a5a6)5=5log39=10

  故選B

  【點(diǎn)評(píng)】本題主要考查了等比數(shù)列的性質(zhì).解題的關(guān)鍵是靈活利用了等比中項(xiàng)的性質(zhì).

  8.下列命題為真命題的是(  )

  A.已知x,y∈R,則 是 的充要條件

  B.當(dāng)0

  C.a,b∈R,

  D.x∈R,sinx+cosx=

  【考點(diǎn)】特稱命題.

  【專題】證明題;整體思想;綜合法;簡(jiǎn)易邏輯.

  【分析】A利用充分條件和必要條件的定義進(jìn)行判斷

  B利用函數(shù)的單調(diào)性進(jìn)行判斷

  C根據(jù)基本不等式成立的條件進(jìn)行判斷

  D根據(jù)三角函數(shù)的有界性進(jìn)行判斷

  【解答】解:A.當(dāng)x=4,y=1,滿足 ,但 不成立,即 不是 的充要條件,故A錯(cuò)誤,

  B.當(dāng)0

  C.當(dāng)a,b<0時(shí), 不成立,故C錯(cuò)誤,

  D.sinx+cosx= sin(x+ )∈[﹣ , ],

  ∵ ∈[﹣ , ],∴x∈R,sinx+cosx= ,故D正確,

  故選:D

  【點(diǎn)評(píng)】本題主要考查命題的真假判斷,涉及充分條件和必要條件,函數(shù)單調(diào)性,基本不等式以及三角函數(shù)的真假判斷,知識(shí)點(diǎn)較多,綜合性較強(qiáng),但難度不大.

  9.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若 ,且 ,則下列關(guān)系一定不成立的是(  )

  A.a=c B.b=c C.2a=c D.a2+b2=c2

  【考點(diǎn)】余弦定理.

  【專題】解三角形.

  【分析】利用余弦定理表示出cosA,將已知第一個(gè)等式代入求出cosA的值,確定出A度數(shù),再利用正弦定理化簡(jiǎn)第二個(gè)等式,求出sinB的值,確定出B的度數(shù),進(jìn)而求出C的度數(shù),確定出三角形ABC形狀,即可做出判斷.

  【解答】解:∵b2+c2﹣a2= bc,

  ∴cosA= = ,

  ∴A=30°,

  由正弦定理化簡(jiǎn)b= a,得到sinB= sinA= ,

  ∴B=60°或120°,

  當(dāng)B=60°時(shí),C=90°,此時(shí)△ABC為直角三角形,

  得到a2+b2=c2,2a=c;

  當(dāng)B=120°時(shí),C=30°,此時(shí)△ABC為等腰三角形,

  得到a=c,

  綜上,b=c不一定成立,

  故選:B.

  【點(diǎn)評(píng)】此題考查了正弦、余弦定理,以及直角三角形與等腰三角形的性質(zhì),熟練掌握定理是解本題的關(guān)鍵.

  10.已知函數(shù)f(x)=(1﹣ )ex,若同時(shí)滿足條件:

 、賦0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);

 、趚∈(8,+∞),f(x)>0.

  則實(shí)數(shù)a的取值范圍是(  )

  A.(4,8] B.[8,+∞) C.(﹣∞,0)∪[8,+∞) D.(﹣∞,0)∪(4,8]

  【考點(diǎn)】函數(shù)在某點(diǎn)取得極值的條件;利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.

  【專題】導(dǎo)數(shù)的綜合應(yīng)用.

  【分析】求導(dǎo)數(shù),由①得到 ;

  由②x∈(8,+∞),f(x)>0,故只需f(x)在(8,+∞)上的最小值大于0即可,

  分別解出不等式即可得到實(shí)數(shù)a的取值范圍為4

  【解答】解:由于 ,則 =

  令f′(x)=0,則 ,

  故函數(shù)f(x)在(﹣∞,x1),(x2,+∞)上遞增,在(x1,x2)上遞減

  由于x∈(8,+∞),f(x)>0,故只需f(x)在(8,+∞)上的最小值大于0即可,

  當(dāng)x2>8,即 時(shí),函數(shù)f(x)在(8,+∞)上的最小值為 ,此時(shí)無(wú)解;

  當(dāng)x2≤8,即 時(shí),函數(shù)f(x)在(8,+∞)上的最小值為 ,解得a≤8.

  又由x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn),故 解得a>4;

  故實(shí)數(shù)a的取值范圍為4

  故答案為 A

  【點(diǎn)評(píng)】本題考查函數(shù)在某點(diǎn)取得極值的條件,屬于基礎(chǔ)題.

  二、填空題(共5小題,每小題5分,滿分25分)

  11.命題“x∈N,x2≠x”的否定是 x∈N,x2=x .

  【考點(diǎn)】命題的否定.

  【專題】簡(jiǎn)易邏輯.

  【分析】根據(jù)全稱命題的否定是特稱命題即可得到結(jié)論.

  【解答】解:∵全稱命題的否定是特稱命題,

  ∴命題的否定是:x∈N,x2=x.

  故答案為:x∈N,x2=x.

  【點(diǎn)評(píng)】本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

  12.在△ABC中,若BC=3,∠A= ,AC= ,則∠C的大小為   .

  【考點(diǎn)】正弦定理.

  【專題】計(jì)算題;轉(zhuǎn)化思想;數(shù)形結(jié)合法;解三角形.

  【分析】由已知及正弦定理可得sinB= = ,由大邊對(duì)大角可得0

  【解答】解:∵BC=3,∠A= ,AC= ,

  ∴由正弦定理可得:sinB= = = ,

  ∵AC

  ∴B= ,

  ∴C=π﹣A﹣B= .

  故答案為: .

  【點(diǎn)評(píng)】本題主要考查了正弦定理,三角形內(nèi)角和定理,大邊對(duì)大角,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,求B的值是解題的關(guān)鍵,屬于中檔題.

  13.曲線f(x)=xsin x在點(diǎn)( , )處的切線方程是 x﹣y=0 .

  【考點(diǎn)】利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程.

  【專題】導(dǎo)數(shù)的概念及應(yīng)用.

  【分析】求導(dǎo)函數(shù),求出切線的斜率,再求出切點(diǎn)的坐標(biāo),可得切線方程.

  【解答】解:∵f(x)=xsinx,

  ∴f′(x)=sinx+xcosx,

  ∴f′( )=1,

  ∵f( )= ,

  ∴曲線f(x)=xsin x在點(diǎn)( , )處的切線方程是y﹣ =x﹣ ,即x﹣y=0.

  故答案為:x﹣y=0.

  【點(diǎn)評(píng)】本題考查導(dǎo)數(shù)的幾何意義,考查切線方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

  14.已知函數(shù)f(x)的定義域?yàn)閇1,+∞),且f(2)=f(4)=1,f′(x)是f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如圖所示,則不等式組 所表示的平面區(qū)域的面積是 3 .

  【考點(diǎn)】簡(jiǎn)單線性規(guī)劃的應(yīng)用.

  【專題】數(shù)形結(jié)合;不等式的解法及應(yīng)用.

  【分析】根據(jù)函數(shù)圖象,確定f(x)在[1,3)上是減函數(shù),在[3,+∞)上是增函數(shù),結(jié)合f(2)=f(4)=1,可得一個(gè)關(guān)于x,y的二元一次不等式組,畫出滿足條件的可行域,根據(jù)平面圖形,由面積公式可得答案.

  【解答】解:由圖可知,f(x)在[1,3)上是減函數(shù),在[3,+∞)上是增函數(shù),

  又f(2)=f(4)=1,f(2x+y)≤1,

  所以2≤2x+y≤4,

  從而不等式組為 ,作出可行域如圖所示,

  其面積為S=×2×4﹣×1×2=3.

  故答案為:3

  【點(diǎn)評(píng)】本題考查的知識(shí)點(diǎn)是簡(jiǎn)單線性規(guī)劃的應(yīng)用,函數(shù)的圖象與性質(zhì),平面區(qū)域的面積問(wèn)題是線性規(guī)劃問(wèn)題中一類重要題型,在解題時(shí),關(guān)鍵是正確地畫出平面區(qū)域,然后結(jié)合有關(guān)面積公式求解.

  15.以下幾個(gè)命題中:其中真命題的序號(hào)為、邰堋(寫出所有真命題的序號(hào))

 、僭O(shè)A,B為兩個(gè)定點(diǎn),k為非零常數(shù)| |﹣| |=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;

 、谄矫鎯(nèi),到定點(diǎn)(2,1)的距離與到定直線3x+4y﹣10=0的距離相等的點(diǎn)的軌跡是拋物線;<

 、垭p曲線 與橢圓 有相同的焦點(diǎn);

 、苋舴匠2x2﹣5x+a=0的兩根可分別作為橢圓和雙曲線的離心率,則0

  【考點(diǎn)】曲線與方程.

  【專題】綜合題;方程思想;綜合法;圓錐曲線的定義、性質(zhì)與方程.

  【分析】①根據(jù)雙曲線的定義知①不正確;

  ②說(shuō)明點(diǎn)(2,1)在直線3x+4y﹣10=0上,不滿足拋物線的定義;

  ③雙曲線的離心率大于1,橢圓的離心率小于1大于0,即可判定;

 、芮蟪鲭p曲線的焦點(diǎn)與橢圓的焦點(diǎn),即可判定.

  【解答】解:①平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的差的絕對(duì)值等于常數(shù)k(k<|F1F2|)的點(diǎn)的軌跡叫做雙曲線,當(dāng)0

 、谠谄矫鎯(nèi),點(diǎn)(2,1)在直線3x+4y﹣10=0上,

  ∴到定點(diǎn)(2,1)的距離與到定直線3x+4y﹣10=0的距離相等的點(diǎn)的軌跡不是拋物線,∴②不正確;

 、垭p曲線 與橢圓 的焦點(diǎn)都是(± ,0),有相同的焦點(diǎn),正確;

 、苷_方程2x2﹣5x+a=0的可分別作為橢圓和雙曲線的離心率,則 ,∴0

  故答案為:③④.

  【點(diǎn)評(píng)】本題通過(guò)命題真假的判定考查橢圓、雙曲線拋物線的定義、性質(zhì)和曲線的方程與方程的曲線等問(wèn)題,是綜合題目.

  三、解答題(共6小題,滿分75分)

  16.已知命題p:x0∈R,使得 成立;命題q:函數(shù)y=loga(x+1)在區(qū)間(0,+∞)上為減函數(shù);

  (1)若命題¬p為真命題,求實(shí)數(shù)a的取值范圍;

  (2)若命題“p或q”為真命題,且“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

  【考點(diǎn)】復(fù)合命題的真假.

  【專題】簡(jiǎn)易邏輯.

  【分析】本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假判定,解決的辦法是先判斷組成復(fù)合命題的簡(jiǎn)單命題的真假,再根據(jù)真值表進(jìn)行判斷.

  【解答】解:(1)∵命題p:x0∈R,使得 成立

  ∴¬p:x∈R,ax2﹣2x﹣1≤0成立

  ∴①a≥0時(shí) ax2﹣2x﹣1≤0不恒成立

 、谟 得a≤﹣1

  (2)∵命題q:函數(shù)y=loga(x+1)在區(qū)間(0,+∞)上為減函數(shù)

  ∴命題q為真,實(shí)數(shù)a的取值范圍是:0

  ∵命題“p或q”為真,且“p且q”為假,

  ∴命題p、q一真一假

 、佼(dāng)p真q假時(shí),則 ,得實(shí)數(shù)a的取值范圍,﹣1

 、诋(dāng)p假q真時(shí),則 ,實(shí)數(shù)a的取值范圍:無(wú)解

  ∴實(shí)數(shù)a的取值范圍是﹣1

  【點(diǎn)評(píng)】本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假判定,屬于基礎(chǔ)題目

  17.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且a,b,c成等比數(shù)列.

  (Ⅰ)若 ,B=60°,求a,b,c的值;

  (Ⅱ)求角B的取值范圍.

  【考點(diǎn)】等比數(shù)列的性質(zhì);余弦定理.

  【專題】綜合題;等差數(shù)列與等比數(shù)列;解三角形.

  【分析】(Ⅰ)利用等比數(shù)列的性質(zhì),可得b2=ac,再結(jié)合余弦定理,即可求a,b,c的值;

  (Ⅱ)利用余弦定理,結(jié)合基本不等式,即可求角B的取值范圍.

  【解答】解:(Ⅰ)∵a,b,c成等比數(shù)列,

  ∴b2=ac﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)

  ∵B=60°

  ∴ ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)

  聯(lián)立方程組 ,

  解得 ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)

  (Ⅱ) ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)

  ∵a2+c2≥2ac,∴ ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)

  ∴0°

  【點(diǎn)評(píng)】本題考查等比數(shù)列的性質(zhì),考查余弦定理的運(yùn)用,考查基本不等式,考查學(xué)生的計(jì)算能力,正確運(yùn)用余弦定理是關(guān)鍵.

  18.已知橢圓 + =1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在此橢圓上,且PF1⊥F1F2|PF1|= |PF2|= .

  (1)求橢圓的方程;

  (2)若直線l過(guò)圓x2+y2+4x﹣2y=0的圓心M且交橢圓于A,B兩點(diǎn),且A,B關(guān)于點(diǎn)M對(duì)稱,求直線l的方程.

  【考點(diǎn)】橢圓的應(yīng)用.

  【專題】綜合題;壓軸題.

  【分析】解:(Ⅰ)由題意可知2a=|PF1|+|PF2|=6,a=3, ,由此可求出橢圓C的方程.

  (Ⅱ)解法一:設(shè)A,B的坐標(biāo)分別為(x1,y1)、(x2,y2).設(shè)直線l的方程為y=k(x+2)+1,代入橢圓C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k﹣27=0.因?yàn)锳,B關(guān)于點(diǎn)M對(duì)稱.所以 .解得 ,由此可求出直線l的方程.

  (Ⅱ)解法二:設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2).由題意x1≠x2且 ,① ,②

  由①﹣②得 .③因?yàn)锳、B關(guān)于點(diǎn)M對(duì)稱,所以x1+x2=﹣4,y1+y2=2,代入③得直線l的斜率為 ,由此可求出直線l的方程.

  【解答】解:(Ⅰ)因?yàn)辄c(diǎn)P在橢圓C上,所以2a=|PF1|+|PF2|=6,a=3.

  在Rt△PF1F2中, ,

  故橢圓的半焦距c= ,

  從而b2=a2﹣c2=4,

  所以橢圓C的方程為 =1.

  (Ⅱ)解法一:

  設(shè)A,B的坐標(biāo)分別為(x1,y1)、(x2,y2).

  已知圓的方程為(x+2)2+(y﹣1)2=5,

  所以圓心M的坐標(biāo)為(﹣2,1).

  從而可設(shè)直線l的方程為

  y=k(x+2)+1,

  代入橢圓C的方程得

  (4+9k2)x2+(36k2+18k)x+36k2+36k﹣27=0.

  因?yàn)锳,B關(guān)于點(diǎn)M對(duì)稱.

  所以 .

  解得 ,

  所以直線l的方程為 ,

  即8x﹣9y+25=0.

  (經(jīng)檢驗(yàn),所求直線方程符合題意)

  (Ⅱ)解法二:

  已知圓的方程為(x+2)2+(y﹣1)2=5,

  所以圓心M的坐標(biāo)為(﹣2,1).

  設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2).

  由題意x1≠x2且 ,① ,②

  由①﹣②得 .③

  因?yàn)锳、B關(guān)于點(diǎn)M對(duì)稱,

  所以x1+x2=﹣4,y1+y2=2,

  代入③得 = ,

  即直線l的斜率為 ,

  所以直線l的方程為y﹣1= (x+2),

  即8x﹣9y+25=0.

  (經(jīng)檢驗(yàn),所求直線方程符合題意.)

  【點(diǎn)評(píng)】本題綜合考查直線和圓、橢圓的位置關(guān)系,解題時(shí)要認(rèn)真審題,仔細(xì)解題,避免錯(cuò)誤.

  19.數(shù)列{an}滿足a1=1且8an+1an﹣16an+1+2an+5=0(n≥1).記 .

  (Ⅰ)求b1、b2、b3、b4的值;

  (Ⅱ)求數(shù)列{bn}的通項(xiàng)公式及數(shù)列{anbn}的前n項(xiàng)和Sn.

  【考點(diǎn)】數(shù)列的求和;數(shù)列遞推式.

  【專題】計(jì)算題;壓軸題.

  【分析】(法一)(I)由a1結(jié)合遞推公式可求a2,a3,a4,代入 求b1,b2,b3,b4

  (II)先由(I)中求出的b1,b2,b3,b4的值,觀察規(guī)律可猜想數(shù)列 為等比數(shù)列,進(jìn)而可求bn,結(jié)合 ,從而猜想得以證明,代入求出anbn,進(jìn)而求出前n和sn

  (法二)(I) 代入遞推公式可得 ,代入可求b1,b2,b3,b4

  (II)利用(I)中的遞推關(guān)系個(gè)構(gòu)造數(shù)列 為等比數(shù)列,從而可求bn,sn

  (法三)(I)同法一

  (II)先由(I)中求出的b1,b2,b3,b4的值,觀察規(guī)律可猜想數(shù)列bn+1﹣bn為等比數(shù)列,仿照法一再證明猜想,根據(jù)求通項(xiàng)的方法求bn,進(jìn)一步求sn

  【解答】解:法一:

  (I)a1=1,故 ; ,

  故 ; ,

  故 ; ,

  故 .

  (II)因 ,

  故猜想 是首項(xiàng)為 ,公比q=2的等比數(shù)列.

  因an≠2,(否則將an=2代入遞推公式會(huì)導(dǎo)致矛盾)故 .

  因 ,

  故 確是公比為q=2的等比數(shù)列.

  因 ,故 , ,

  由 得 ,

  故Sn=a1b1+a2b2+…+anbn= = =

  法二:

  (Ⅰ)由 得 ,代入遞推關(guān)系8an+1an﹣16an+1+2an+5=0,

  整理得 ,即 ,

  由a1=1,有b1=2,所以 .

  (Ⅱ)由 ,

  所以 是首項(xiàng)為 ,公比q=2的等比數(shù)列,

  故 ,即 .

  由 ,得 ,

  故Sn=a1b1+a2b2+…+anbn= = = .

  法三:

  (Ⅰ)同解法一

  (Ⅱ) 猜想{bn+1﹣bn}是首項(xiàng)為 ,

  公比q=2的等比數(shù)列,

  又因an≠2,故 .

  因此 =

  ;

  = .

  因 是公比q=2的等比數(shù)列, ,

  從而bn=(bn﹣bn﹣1)+(bn﹣1﹣bn﹣2)+…+(b2﹣b1)+b1=

  =

  = .

  由 得 ,

  故Sn=a1b1+a2b2+…+anbn= = = .

  【點(diǎn)評(píng)】本題考查了數(shù)列的綜合運(yùn)用:遞推關(guān)系的運(yùn)用,構(gòu)造等比求數(shù)列通項(xiàng),累加求通項(xiàng),歸納推理的運(yùn)用,綜合考查了考生的推理運(yùn)算能力.

  20.一個(gè)截面為拋物線形的舊河道(如圖1),河口寬AB=4米,河深2米,現(xiàn)要將其截面改造為等腰梯形(如圖2),要求河道深度不變,而且施工時(shí)只能挖土,不準(zhǔn)向河道填土.

  (1)建立恰當(dāng)?shù)闹苯亲鴺?biāo)系并求出拋物線弧AB的標(biāo)準(zhǔn)方程;

  (2)試求當(dāng)截面梯形的下底(較長(zhǎng)的底邊)長(zhǎng)為多少米時(shí),才能使挖出的土最少?

  【考點(diǎn)】拋物線的應(yīng)用.

  【專題】應(yīng)用題.

  【分析】(1)以拋物線的頂點(diǎn)為原點(diǎn),AB中垂線為y軸建立直角坐標(biāo)系,一依題意可知A,B的坐標(biāo),設(shè)出拋物線的方程,把點(diǎn)B代入求得p,進(jìn)而可求得拋物線的方程.

  (2)設(shè)等腰梯形的腰與拋物線相切于P,則可利用導(dǎo)函數(shù)求得P的切線的斜率,表示直線l的方程,分別令y=0和2求得x,利用梯形面積求得面積的表達(dá)式,利用基本不等式求得三角形面積的小值.

  【解答】解:(1)如圖:以拋物線的頂點(diǎn)為原點(diǎn),AB中垂線為y軸建立直角坐標(biāo)系

  則A(﹣2,2),B(2,2)

  設(shè)拋物線的方程為x2=2Py(P>0),

  將點(diǎn)B(2,2)代入得P=1

  所以拋物線弧AB方程為x2=2y(﹣2≤x≤2)

  (2)設(shè)等腰梯形的腰與拋物線相切于 ,(不妨t>0)

  則過(guò) 的切線l的斜率為y′|x=t=t

  所以切線l的方程為: ,即

  令y=0,得 ,

  令y=2,得 ,

  所以梯形面積

  當(dāng)僅當(dāng) ,即 時(shí),“=”成立

  此時(shí)下底邊長(zhǎng)為

  答:當(dāng)梯形的下底邊長(zhǎng)等于 米時(shí),挖出的土最少.

  【點(diǎn)評(píng)】考查待定系數(shù)法求曲線方程的知識(shí);考查直線方程的知識(shí);考查由函數(shù)導(dǎo)數(shù)或判別式法求曲線切線的知識(shí);考查應(yīng)用函數(shù)單調(diào)性或不等式求函數(shù)最值的知識(shí);考查選擇恰當(dāng)參數(shù)建立數(shù)學(xué)式子研究幾何圖形的解析幾何思維;考查根據(jù)實(shí)際選擇數(shù)學(xué)模型的能力(即數(shù)學(xué)建模能力).

  21.如圖,動(dòng)點(diǎn)M到兩定點(diǎn)A(﹣1,0)、B(2,0)構(gòu)成△MAB,且∠MBA=2∠MAB,設(shè)動(dòng)點(diǎn)M的軌跡為C.

  (Ⅰ)求軌跡C的方程;

  (Ⅱ)設(shè)直線y=﹣2x+m與y軸交于點(diǎn)P,與軌跡C相交于點(diǎn)Q、R,且|PQ|<|PR|,求 的取值范圍.

  【考點(diǎn)】直線與圓錐曲線的綜合問(wèn)題;圓錐曲線的軌跡問(wèn)題.

  【專題】綜合題;壓軸題.

  【分析】(Ⅰ)設(shè)出點(diǎn)M(x,y),分類討論,根據(jù)∠MBA=2∠MAB,利用正切函數(shù)公式,建立方程化簡(jiǎn)即可得到點(diǎn)M的軌跡方程;

  (Ⅱ)直線y=﹣2x+m與3x2﹣y2﹣3=0(x>1)聯(lián)立,消元可得x2﹣4mx+m2+3=0①,利用①有兩根且均在(1,+∞)內(nèi)

  可知,m>1,m≠2設(shè)Q,R的坐標(biāo),求出xR,xQ,利用 ,即可確定 的取值范圍.

  【解答】解:(Ⅰ)設(shè)M的坐標(biāo)為(x,y),顯然有x>0,且y≠0

  當(dāng)∠MBA=90°時(shí),點(diǎn)M的坐標(biāo)為(2,±3)

  當(dāng)∠MBA≠90°時(shí),x≠2,由∠MBA=2∠MAB有tan∠MBA= ,

  化簡(jiǎn)可得3x2﹣y2﹣3=0

  而點(diǎn)(2,±3)在曲線3x2﹣y2﹣3=0上

  綜上可知,軌跡C的方程為3x2﹣y2﹣3=0(x>1);

  (Ⅱ)直線y=﹣2x+m與3x2﹣y2﹣3=0(x>1)聯(lián)立,消元可得x2﹣4mx+m2+3=0①

  ∴①有兩根且均在(1,+∞)內(nèi)

  設(shè)f(x)=x2﹣4mx+m2+3,∴ ,∴m>1,m≠2

  設(shè)Q,R的坐標(biāo)分別為(xQ,yQ),(xR,yR),

  ∵|PQ|<|PR|,∴xR=2m+ ,xQ=2m﹣ ,

  ∴ = =

  ∵m>1,且m≠2

  ∴ ,且

  ∴ ,且

  ∴ 的取值范圍是(1,7)∪(7,7+4 )

  【點(diǎn)評(píng)】本題以角的關(guān)系為載體,考查直線、雙曲線、軌跡方程的求解,考查思維能力,運(yùn)算能力,考查思維的嚴(yán)謹(jǐn)性,解題的關(guān)鍵是確定參數(shù)的范圍.

  高青縣高二數(shù)學(xué)上期末試卷及答案 2

  一、選擇題

  1.已知an+1=an-3,則數(shù)列{an}是()

  A.遞增數(shù)列 B.遞減數(shù)列

  C.常數(shù)列 D.擺動(dòng)數(shù)列

  解析:∵an+1-an=-30,由遞減數(shù)列的定義知B選項(xiàng)正確.故選B.

  答案:B

  2.設(shè)an=1n+1+1n+2+1n+3++12n+1(nN*),則()

  A.an+1an B.an+1=an

  C.an+1

  解析:an+1-an=(1n+2+1n+3++12n+1+12n+2+12n+3)-(1n+1+1n+2++12n+1)=12n+3-12n+1=-12n+32n+2.

  ∵nN*,an+1-an0.故選C.

  答案:C

  3.1,0,1,0,的通項(xiàng)公式為()

  A.2n-1 B.1+-1n2

  C.1--1n2 D.n+-1n2

  解析:解法1:代入驗(yàn)證法.

  解法2:各項(xiàng)可變形為1+12,1-12,1+12,1-12,偶數(shù)項(xiàng)為1-12,奇數(shù)項(xiàng)為1+12.故選C.

  答案:C

  4.已知數(shù)列{an}滿足a1=0,an+1=an-33an+1(nN*),則a20等于()

  A.0 B.-3

  C.3 D.32

  解析:由a2=-3,a3=3,a4=0,a5=-3,可知此數(shù)列的最小正周期為3,a20=a36+2=a2=-3,故選B.

  答案:B

  5.已知數(shù)列{an}的通項(xiàng)an=n2n2+1,則0.98()

  A.是這個(gè)數(shù)列的項(xiàng),且n=6

  B.不是這個(gè)數(shù)列的項(xiàng)

  C.是這個(gè)數(shù)列的項(xiàng),且n=7

  D.是這個(gè)數(shù)列的項(xiàng),且n=7

  解析:由n2n2+1=0.98,得0.98n2+0.98=n2,n2=49.n=7(n=-7舍去),故選C.

  答案:C

  6.若數(shù)列{an}的通項(xiàng)公式為an=7(34)2n-2-3(34)n-1,則數(shù)列{an}的()

  A.最大項(xiàng)為a5,最小項(xiàng)為a6

  B.最大項(xiàng)為a6,最小項(xiàng)為a7

  C.最大項(xiàng)為a1,最小項(xiàng)為a6

  D.最大項(xiàng)為a7,最小項(xiàng)為a6

  解析:令t=(34)n-1,nN+,則t(0,1],且(34)2n-2=[(34)n-1]2=t2.

  從而an=7t2-3t=7(t-314)2-928.

  函數(shù)f(t)=7t2-3t在(0,314]上是減函數(shù),在[314,1]上是增函數(shù),所以a1是最大項(xiàng),故選C.

  答案:C

  7.若數(shù)列{an}的前n項(xiàng)和Sn=32an-3,那么這個(gè)數(shù)列的通項(xiàng)公式為()

  A.an=23n-1 B.an=32n

  C.an=3n+3 D.an=23n

  解析:

 、-②得anan-1=3.

  ∵a1=S1=32a1-3,

  a1=6,an=23n.故選D.

  答案:D

  8.數(shù)列{an}中,an=(-1)n+1(4n-3),其前n項(xiàng)和為Sn,則S22-S11等于()

  A.-85 B.85

  C.-65 D.65

  解析:S22=1-5+9-13+17-21+-85=-44,

  S11=1-5+9-13++33-37+41=21,

  S22-S11=-65.

  或S22-S11=a12+a13++a22=a12+(a13+a14)+(a15+a16)++(a21+a22)=-65.故選C.

  答案:C

  9.在數(shù)列{an}中,已知a1=1,a2=5,an+2=an+1-an,則a2007等于()

  A.-4 B.-5

  C.4 D.5

  解析:依次算出前幾項(xiàng)為1,5,4,-1,-5,-4,1,5,4,發(fā)現(xiàn)周期為6,則a2007=a3=4.故選C.

  答案:C

  10.數(shù)列{an}中,an=(23)n-1[(23)n-1-1],則下列敘述正確的是()

  A.最大項(xiàng)為a1,最小項(xiàng)為a3

  B.最大項(xiàng)為a1,最小項(xiàng)不存在

  C.最大項(xiàng)不存在,最小項(xiàng)為a3

  D.最大項(xiàng)為a1,最小項(xiàng)為a4

  解析:令t=(23)n-1,則t=1,23,(23)2,且t(0,1]時(shí),an=t(t-1),an=t(t-1)=(t-12)2-14.

  故最大項(xiàng)為a1=0.

  當(dāng)n=3時(shí),t=(23)n-1=49,a3=-2081;

  當(dāng)n=4時(shí),t=(23)n-1=827,a4=-152729;

  又a3

  答案:A

  二、填空題

  11.已知數(shù)列{an}的通項(xiàng)公式an=

  則它的前8項(xiàng)依次為________.

  解析:將n=1,2,3,8依次代入通項(xiàng)公式求出即可.

  答案:1,3,13,7,15,11,17,15

  12.已知數(shù)列{an}的通項(xiàng)公式為an=-2n2+29n+3,則{an}中的最大項(xiàng)是第________項(xiàng).

  解析:an=-2(n-294)2+8658.當(dāng)n=7時(shí),an最大.

  答案:7

  13.若數(shù)列{an}的前n項(xiàng)和公式為Sn=log3(n+1),則a5等于________.

  解析:a5=S5-S4=log3(5+1)-log3(4+1)=log365.

  答案:log365

  14.給出下列公式:

 、賏n=sinn

  ②an=0,n為偶數(shù),-1n,n為奇數(shù);

 、踑n=(-1)n+1.1+-1n+12;

 、躠n=12(-1)n+1[1-(-1)n].

  其中是數(shù)列1,0,-1,0,1,0,-1,0,的通項(xiàng)公式的有________.(將所有正確公式的序號(hào)全填上)

  解析:用列舉法可得.

  答案:①

  三、解答題

  15.求出數(shù)列1,1,2,2,3,3,的一個(gè)通項(xiàng)公式.

  解析:此數(shù)列化為1+12,2+02,3+12,4+02,5+12,6+02,由分子的'規(guī)律知,前項(xiàng)組成正自然數(shù)數(shù)列,后項(xiàng)組成數(shù)列1,0,1,0,1,0,.

  an=n+1--1n22,

  即an=14[2n+1-(-1)n](nN*).

  也可用分段式表示為

  16.已知數(shù)列{an}的通項(xiàng)公式an=(-1)n12n+1,求a3,a10,a2n-1.

  解析:分別用3、10、2n-1去替換通項(xiàng)公式中的n,得

  a3=(-1)3123+1=-17,

  a10=(-1)101210+1=121,

  a2n-1=(-1)2n-1122n-1+1=-14n-1.

  17.在數(shù)列{an}中,已知a1=3,a7=15,且{an}的通項(xiàng)公式是關(guān)于項(xiàng)數(shù)n的一次函數(shù).

  (1)求此數(shù)列的通項(xiàng)公式;

  (2)將此數(shù)列中的偶數(shù)項(xiàng)全部取出并按原來(lái)的先后順序組成一個(gè)新的數(shù)列{bn},求數(shù)列{bn}的通項(xiàng)公式.

  解析:(1)依題意可設(shè)通項(xiàng)公式為an=pn+q,

  得p+q=3,7p+q=15.解得p=2,q=1.

  {an}的通項(xiàng)公式為an=2n+1.

  (2)依題意bn=a2n=2(2n)+1=4n+1,

  {bn}的通項(xiàng)公式為bn=4n+1.

  18.已知an=9nn+110n(nN*),試問(wèn)數(shù)列中有沒(méi)有最大項(xiàng)?如果有,求出最大項(xiàng),如果沒(méi)有,說(shuō)明理由.

  解析:∵an+1-an=(910)(n+1)(n+2)-(910)n(n+1)=(910)n+18-n9,

  當(dāng)n7時(shí),an+1-an

  當(dāng)n=8時(shí),an+1-an=0;

  當(dāng)n9時(shí),an+1-an0.

  a1

  故數(shù)列{an}存在最大項(xiàng),最大項(xiàng)為a8=a9=99108.

  高青縣高二數(shù)學(xué)上期末試卷及答案 3

  一、選擇題

  1.某年級(jí)有6個(gè)班,分別派3名語(yǔ)文教師任教,每個(gè)教師教2個(gè)班,則不同的任課方法種數(shù)為( )

  A.C26C24C22 B.A26A24A22

  C.C26C24C22C33 D.A26C24C22A33

  [答案] A

  2.從單詞“equation”中取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排法共有( )

  A.120種 B.480種

  C.720種 D.840種

  [答案] B

  [解析] 先選后排,從除qu外的6個(gè)字母中任選3個(gè)字母有C36種排法,再將qu看成一個(gè)整體(相當(dāng)于一個(gè)元素)與選出的3個(gè)字母進(jìn)行全排列有A44種排法,由分步乘法計(jì)數(shù)原理得不同排法共有C36A44=480(種).

  3.從編號(hào)為1、2、3、4的四種不同的種子中選出3種,在3塊不同的土地上試種,每塊土地上試種一種,其中1號(hào)種子必須試種,則不同的試種方法有( )

  A.24種 B.18種

  C.12種 D.96種

  [答案] B

  [解析] 先選后排C23A33=18,故選B.

  4.把0、1、2、3、4、5這六個(gè)數(shù),每次取三個(gè)不同的數(shù)字,把其中最大的數(shù)放在百位上排成三位數(shù),這樣的三位數(shù)有( )

  A.40個(gè) B.120個(gè)

  C.360個(gè) D.720個(gè)

  [答案] A

  [解析] 先選取3個(gè)不同的數(shù)有C36種方法,然后把其中最大的數(shù)放在百位上,另兩個(gè)不同的數(shù)放在十位和個(gè)位上,有A22種排法,故共有C36A22=40個(gè)三位數(shù).

  5.(2010湖南理,7)在某種信息傳輸過(guò)程中,用4個(gè)數(shù)字的一個(gè)排列(數(shù)字允許重復(fù))表示一個(gè)信息,不同排列表示不同信息,若所用數(shù)字只有0和1,則與信息0110至多有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同的信息個(gè)數(shù)為( )

  A.10 B.11

  C.12 D.15

  [答案] B

  [解析] 與信息0110至多有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同的信息包括三類:

  第一類:與信息0110只有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同有C24=6(個(gè))

  第二類:與信息0110只有一個(gè)對(duì)應(yīng)位置上的數(shù)字相同有C14=4(個(gè))

  第三類:與信息0110沒(méi)有一個(gè)對(duì)應(yīng)位置上的數(shù)字相同有C04=1(個(gè))

  與信息0110至多有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同的信息有6+4+1=11(個(gè))

  6.北京《財(cái)富》全球論壇開幕期間,某高校有14名志愿者參加接待工作.若每天排早,中,晚三班,每班4人,每人每天最多值一班,則開幕式當(dāng)天不同的排班種數(shù)為( )

  A.C414C412C48 B.C1214C412C48

  C.C1214C412C48A33 D.C1214C412C48A33

  [答案] B

  [解析] 解法1:由題意知不同的排班種數(shù)為:C414C410C46=14×13×12×114!10×9×8×74!6×52。紺1214C412C48.

  故選B.

  解法2:也可先選出12人再排班為:C1214C412C48C44,即選B.

  7.(2009湖南理5)從10名大學(xué)畢業(yè)生中選3人擔(dān)任村長(zhǎng)助理,則甲、乙至少有1人入選,而丙沒(méi)有入選的不同選法的種數(shù)為( )

  A.85 B.56

  C.49 D.28

  [答案] C

  [解析] 考查有限制條件的組合問(wèn)題.

  (1)從甲、乙兩人中選1人,有2種選法,從除甲、乙、丙外的7人中選2人,有C27種選法,由分步乘法計(jì)數(shù)原理知,共有2C27=42種.

  (2)甲、乙兩人全選,再?gòu)某獾钠溆?人中選1人共7種選法.

  由分類計(jì)數(shù)原理知共有不同選法42+7=49種.

  8.以一個(gè)正三棱柱的頂點(diǎn)為頂點(diǎn)的四面體共有( )

  A.6個(gè) B.12個(gè)

  C.18個(gè) D.30個(gè)

  [答案] B

  [解析] C46-3=12個(gè),故選B.

  9.(2009遼寧理,5)從5名男醫(yī)生、4名女醫(yī)生中選3名醫(yī)生組成一個(gè)醫(yī)療小分隊(duì),要求其中男、女醫(yī)生都有,則不同的組隊(duì)方案共有( )

  A.70種 B.80種

  C.100種 D.140種

  [答案] A

  [解析] 考查排列組合有關(guān)知識(shí).

  解:可分兩類,男醫(yī)生2名,女醫(yī)生1名或男醫(yī)生1名,女醫(yī)生2名,

  ∴共有C25C14+C15C24=70,∴選A.

  10.設(shè)集合Ⅰ={1,2,3,4,5}.選擇Ⅰ的兩個(gè)非空子集A和B,要使B中最小的數(shù)大于A中最大的數(shù),則不同的選擇方法共有( )

  A.50種 B.49種

  C.48種 D.47種

  [答案] B

  [解析] 主要考查集合、排列、組合的基礎(chǔ)知識(shí).考查分類討論的思想方法.

  因?yàn)榧螦中的最大元素小于集合B中的最小元素,A中元素從1、2、3、4中取,B中元素從2、3、4、5中取,由于A、B非空,故至少要有一個(gè)元素.

  1° 當(dāng)A={1}時(shí),選B的方案共有24-1=15種,

  當(dāng)A={2}時(shí),選B的方案共有23-1=7種,

  當(dāng)A={3}時(shí),選B的方案共有22-1=3種,

  當(dāng)A={4}時(shí),選B的方案共有21-1=1種.

  故A是單元素集時(shí),B有15+7+3+1=26種.

  2° A為二元素集時(shí),

  A中最大元素是2,有1種,選B的方案有23-1=7種.

  A中最大元素是3,有C12種,選B的方案有22-1=3種.故共有2×3=6種.

  A中最大元素是4,有C13種.選B的'方案有21-1=1種,故共有3×1=3種.

  故A中有兩個(gè)元素時(shí)共有7+6+3=16種.

  3° A為三元素集時(shí),

  A中最大元素是3,有1種,選B的方案有22-1=3種.

  A中最大元素是4,有C23=3種,選B的方案有1種,

  ∴共有3×1=3種.

  ∴A為三元素時(shí)共有3+3=6種.

  4° A為四元素時(shí),只能是A={1、2、3、4},故B只能是{5},只有一種.

  ∴共有26+16+6+1=49種.

  二、填空題

  11.北京市某中學(xué)要把9臺(tái)型號(hào)相同的電腦送給西部地區(qū)的三所希望小學(xué),每所小學(xué)至少得到2臺(tái),共有______種不同送法.

  [答案] 10

  [解析] 每校先各得一臺(tái),再將剩余6臺(tái)分成3份,用插板法解,共有C25=10種.

  12.一排7個(gè)座位分給3人坐,要求任何兩人都不得相鄰,所有不同排法的總數(shù)有________種.

  [答案] 60

  [解析] 對(duì)于任一種坐法,可視4個(gè)空位為0,3個(gè)人為1,2,3則所有不同坐法的種數(shù)可看作4個(gè)0和1,2,3的一種編碼,要求1,2,3不得相鄰故從4個(gè)0形成的5個(gè)空檔中選3個(gè)插入1,2,3即可.

  ∴不同排法有A35=60種.

  13.(09海南寧夏理15)7名志愿者中安排6人在周六、周日兩天參加社區(qū)公益活動(dòng).若每天安排3人,則不同的安排方案共有________種(用數(shù)字作答).

  [答案] 140

  [解析] 本題主要考查排列組合知識(shí).

  由題意知,若每天安排3人,則不同的安排方案有

  C37C34=140種.

  14.2010年上海世博會(huì)期間,將5名志愿者分配到3個(gè)不同國(guó)家的場(chǎng)館參加接待工作,每個(gè)場(chǎng)館至少分配一名志愿者的方案種數(shù)是________種.

  [答案] 150

  [解析] 先分組共有C35+C25C232種,然后進(jìn)行排列,有A33種,所以共有(C35+C25C232)A33=150種方案.

  三、解答題

  15.解方程Cx2+3x+216=C5x+516.

  [解析] 因?yàn)镃x2+3x+216=C5x+516,所以x2+3x+2=5x+5或(x2+3x+2)+(5x+5)=16,即x2-2x-3=0或x2+8x-9=0,所以x=-1或x=3或x=-9或x=1.經(jīng)檢驗(yàn)x=3和x=-9不符合題意,舍去,故原方程的解為x1=-1,x2=1.

  16.在∠MON的邊OM上有5個(gè)異于O點(diǎn)的點(diǎn),邊ON上有4個(gè)異于O點(diǎn)的點(diǎn),以這10個(gè)點(diǎn)(含O點(diǎn))為頂點(diǎn),可以得到多少個(gè)三角形?

  [解析] 解法1:(直接法)分幾種情況考慮:O為頂點(diǎn)的三角形中,必須另外兩個(gè)頂點(diǎn)分別在OM、ON上,所以有C15C14個(gè),O不為頂點(diǎn)的三角形中,兩個(gè)頂點(diǎn)在OM上,一個(gè)頂點(diǎn)在ON上有C25C14個(gè),一個(gè)頂點(diǎn)在OM上,兩個(gè)頂點(diǎn)在ON上有C15C24個(gè).因?yàn)檫@是分類問(wèn)題,所以用分類加法計(jì)數(shù)原理,共有C15C14+C25C14+C15C24=5×4+10×4+5×6=90(個(gè)).

  解法2:(間接法)先不考慮共線點(diǎn)的問(wèn)題,從10個(gè)不同元素中任取三點(diǎn)的組合數(shù)是C310,但其中OM上的6個(gè)點(diǎn)(含O點(diǎn))中任取三點(diǎn)不能得到三角形,ON上的5個(gè)點(diǎn)(含O點(diǎn))中任取3點(diǎn)也不能得到三角形,所以共可以得到C310-C36-C35個(gè),即C310-C36-C35=10×9×81×2×3-6×5×41×2×3-5×41×2=120-20-10=90(個(gè)).

  解法3:也可以這樣考慮,把O點(diǎn)看成是OM邊上的點(diǎn),先從OM上的6個(gè)點(diǎn)(含O點(diǎn))中取2點(diǎn),ON上的4點(diǎn)(不含O點(diǎn))中取一點(diǎn),可得C26C14個(gè)三角形,再?gòu)腛M上的5點(diǎn)(不含O點(diǎn))中取一點(diǎn),從ON上的4點(diǎn)(不含O點(diǎn))中取兩點(diǎn),可得C15C24個(gè)三角形,所以共有C26C14+C15C24=15×4+5×6=90(個(gè)).

  17.某次足球比賽共12支球隊(duì)參加,分三個(gè)階段進(jìn)行.

  (1)小組賽:經(jīng)抽簽分成甲、乙兩組,每組6隊(duì)進(jìn)行單循環(huán)比賽,以積分及凈剩球數(shù)取前兩名;

  (2)半決賽:甲組第一名與乙組第二名,乙組第一名與甲組第二名作主客場(chǎng)交叉淘汰賽(每?jī)申?duì)主客場(chǎng)各賽一場(chǎng))決出勝者;

  (3)決賽:兩個(gè)勝隊(duì)參加決賽一場(chǎng),決出勝負(fù).

  問(wèn)全程賽程共需比賽多少場(chǎng)?

  [解析] (1)小組賽中每組6隊(duì)進(jìn)行單循環(huán)比賽,就是6支球隊(duì)的任兩支球隊(duì)都要比賽一次,所需比賽的場(chǎng)次即為從6個(gè)元素中任取2個(gè)元素的組合數(shù),所以小組賽共要比賽2C26=30(場(chǎng)).

  (2)半決賽中甲組第一名與乙組第二名(或乙組第一名與甲組第二名)主客場(chǎng)各賽一場(chǎng),所需比賽的場(chǎng)次即為從2個(gè)元素中任取2個(gè)元素的排列數(shù),所以半決賽共要比賽2A22=4(場(chǎng)).

  (3)決賽只需比賽1場(chǎng),即可決出勝負(fù).

  所以全部賽程共需比賽30+4+1=35(場(chǎng)).

  18.有9本不同的課外書,分給甲、乙、丙三名同學(xué),求在下列條件下,各有多少種分法?

  (1)甲得4本,乙得3本,丙得2本;

  (2)一人得4本,一人得3本,一人得2本;

  (3)甲、乙、丙各得3本.

  [分析] 由題目可獲取以下主要信息:

 、9本不同的課外書分給甲、乙丙三名同學(xué);

  ②題目中的3個(gè)問(wèn)題的條件不同.

  解答本題先判斷是否與順序有關(guān),然后利用相關(guān)的知識(shí)去解答.

  [解析] (1)分三步完成:

  第一步:從9本不同的書中,任取4本分給甲,有C49種方法;

  第二步:從余下的5本書中,任取3本給乙,有C35種方法;

  第三步:把剩下的書給丙有C22種方法,

  ∴共有不同的分法有C49C35C22=1260(種).

  (2)分兩步完成:

  第一步:將4本、3本、2本分成三組有C49C35C22種方法;

  第二步:將分成的三組書分給甲、乙、丙三個(gè)人,有A33種方法,

  ∴共有C49C35C22A33=7560(種).

  (3)用與(1)相同的方法求解,

  得C39C36C33=1680(種).

【高青縣高二數(shù)學(xué)上期末試卷及答案】相關(guān)文章:

九年級(jí)上數(shù)學(xué)期末試卷及答案06-17

資陽(yáng)市高二數(shù)學(xué)上期末試卷及答案10-04

三明市高二數(shù)學(xué)上期末試卷及答案09-04

2024高二數(shù)學(xué)上冊(cè)期末試卷09-04

高二數(shù)學(xué)試題及答案09-21

高二數(shù)學(xué)試題及答案10-06

2016小學(xué)數(shù)學(xué)五上期末試卷及答案09-02

贛州市高二上數(shù)學(xué)期末試題及答案01-10

人教版五年級(jí)上語(yǔ)文期末試卷(附答案)01-13