因式分解的方法數(shù)學(xué)知識(shí)點(diǎn)歸納
知識(shí)要點(diǎn):因式分解沒有普遍適用的方法,初中數(shù)學(xué)教材中主要介紹了提公因式法、公式法。
因式分解的方法
注意三原則
1.分解要徹底(是否有公因式,是否可用公式)
2.最后結(jié)果只有小括號(hào)
3.最后結(jié)果中多項(xiàng)式首項(xiàng)系數(shù)為正(例如:-3x^2+x=x(-3x+1))
4.最后結(jié)果每一項(xiàng)都為最簡(jiǎn)因式
歸納方法:
1.提公因式法。
2.公式法。
3.分組分解法。
4.湊數(shù)法。[x^2+(a+b)x+ab=(x+a)(x+b)]
5.組合分解法。
6.十字相乘法。
7.雙十字相乘法。
8.配方法。
9.拆項(xiàng)補(bǔ)項(xiàng)法。
10.換元法。
11.長(zhǎng)除法。
12.求根法。
13.圖象法。
14.主元法。
15.待定系數(shù)法。
16.特殊值法。
17.因式定理法。
基本方法 各項(xiàng)都含有的公共的因式叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,公因式可以是單項(xiàng)式,也可以是多項(xiàng)式。
如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提取公因式
具體方法:當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),公因式的系數(shù)應(yīng)取各項(xiàng)系數(shù)的最大公約數(shù)字母取各項(xiàng)的相同的字母,而且各字母的指數(shù)取次數(shù)最低的。當(dāng)各項(xiàng)的系數(shù)有分?jǐn)?shù)時(shí),公因式系數(shù)為各分?jǐn)?shù)的最大公約數(shù)。如果多項(xiàng)式的第一項(xiàng)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)成為正數(shù)。提出“-”號(hào)時(shí),多項(xiàng)式的各項(xiàng)都要變號(hào)。
口訣:找準(zhǔn)公因式,一次要提盡全家都搬走,留1把家守提負(fù)要變號(hào),變形看奇偶。
例如:-am+bm+cm=-(a-b-c)m
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。
注意:把2a+1/2變成2(a+1/4)不叫提公因式
如果把乘法公式反過來,就可以把某些多項(xiàng)式分解因式,這種方法叫公式法。
平方差公式: (a+b)(a-b)=a^2-b^2,反過來為a^2-b^2=(a+b)(a-b)
完全平方公式:(a+b)^2=a^2+2ab+b^2,反過來為a^2+2ab+b^2=(a+b)^2
(a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2
注意:能運(yùn)用完全平方公式分解因式的多項(xiàng)式必須是三項(xiàng)式,其中有兩項(xiàng)能寫成兩個(gè)數(shù)(或式)的平方和的形式,另一項(xiàng)是這兩個(gè)數(shù)(或式)的積的2倍。
兩根式:ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
例如:a^2+4ab+4b^2 =(a+2b)^2。
1.分解因式技巧掌握:
、俜纸庖蚴绞嵌囗(xiàng)式的恒等變形,要求等式左邊必須是多項(xiàng)式
、诜纸庖蚴降慕Y(jié)果必須是以乘積的形式表示
、勖總(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來多項(xiàng)式的次數(shù)
④分解因式必須分解到每個(gè)多項(xiàng)式因式都不能再分解為止。
注:分解因式前先要找到公因式,在確定公因式前,應(yīng)從系數(shù)和因式兩個(gè)方面考慮。
2.提公因式法基本步驟:
(1)找出公因式
(2)提公因式并確定另一個(gè)因式:
、俚谝徊秸夜蚴娇砂凑沾_定公因式的方法先確定系數(shù)再確定字母
、诘诙教峁蚴讲⒋_定另一個(gè)因式,注意要確定另一個(gè)因式,可用原多項(xiàng)式除以公因式,所得的商即是提公因式后剩下的一個(gè)因式,也可用公因式分別除去原多項(xiàng)式的每一項(xiàng),求的剩下的另一個(gè)因式
③提完公因式后,另一因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同。
知識(shí)要領(lǐng)總結(jié):在競(jìng)賽上,有拆項(xiàng)和添減項(xiàng)法,分組分解法和十字相乘法,待定系數(shù)法,雙十字相乘法,對(duì)稱多項(xiàng)式,輪換對(duì)稱多項(xiàng)式法,余式定理法,求根公式法,換元法,長(zhǎng)除法,短除法,除法等。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的.坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。
通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
【因式分解的方法數(shù)學(xué)知識(shí)點(diǎn)歸納】相關(guān)文章:
因式分解數(shù)學(xué)知識(shí)點(diǎn)歸納07-28
因式分解初二數(shù)學(xué)知識(shí)點(diǎn)歸納08-09
因式分解初一數(shù)學(xué)知識(shí)點(diǎn)歸納07-30
初中數(shù)學(xué)配方法的知識(shí)點(diǎn)歸納10-27
數(shù)學(xué)因式分解的方法05-06
數(shù)學(xué)因式分解知識(shí)點(diǎn)07-28
因式分解的數(shù)學(xué)方法05-10