欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

期末總結(jié)

高一下數(shù)學(xué)期末總結(jié)

時(shí)間:2021-11-23 09:01:16 期末總結(jié) 我要投稿
  • 相關(guān)推薦

高一下數(shù)學(xué)期末總結(jié)

——林麗 本學(xué)期,本人擔(dān)任高一(4)、(5)班數(shù)學(xué)學(xué)科的教學(xué)工作,一學(xué)期來,本人以學(xué)校及教研組工作計(jì)劃為指導(dǎo);以提高教育教學(xué)成績?yōu)橹行模陨罨n改實(shí)驗(yàn)工作為動(dòng)力,認(rèn)真履行崗位職責(zé),較好地完成了工作目標(biāo)任務(wù),現(xiàn)將一學(xué)期來的工作總結(jié)如下:

高一下數(shù)學(xué)期末總結(jié)

一、授人以魚,不如授人以漁

古人云:“授人以魚,不如授人以漁!币簿褪钦f,教師不僅要教學(xué)生學(xué)會(huì),而且更重要的是要學(xué)生會(huì)學(xué),這是二十一世紀(jì)現(xiàn)代素質(zhì)教育的要求。這就需要教師要更新觀念,改變教法,把學(xué)生看作學(xué)習(xí)的主人,培養(yǎng)他們自覺閱讀,提出問題,釋疑歸納的能力。逐步培養(yǎng)和提高學(xué)生的自學(xué)能力,思考問題、解決問題的能力,使他們能終身受益。

1.在課前預(yù)習(xí)中培養(yǎng)學(xué)生的自學(xué)能力。

課前預(yù)習(xí)是教學(xué)中的一個(gè)重要的環(huán)節(jié),從教學(xué)實(shí)踐來看,學(xué)生在課前做不做預(yù)習(xí),學(xué)習(xí)的效果和課堂的氣氛都不一樣。為了抓好這一環(huán)節(jié),我常要求學(xué)生在預(yù)習(xí)中做好以下幾點(diǎn),促使他們?nèi)タ磿?dòng)腦,逐步培養(yǎng)他們的預(yù)習(xí)能力。1、本小節(jié)主要講了哪些基本概念,有哪些注意點(diǎn)?2、本小節(jié)還有哪些定理、性質(zhì)及公式,它們是如何得到的,你看過之后能否復(fù)述一遍?3、對照課本上的例題,你能否回答課本中的練習(xí)4、通過預(yù)習(xí),你有哪些疑問,把它寫在“數(shù)學(xué)摘抄本”上,而且從來沒有要求學(xué)生應(yīng)該記什么不應(yīng)該記什么,而是讓學(xué)生自己評(píng)價(jià)什么有用,什么沒用(對于個(gè)體而言)少數(shù)學(xué)生的問題具有一定的代表性,也有一定的靈活性。這些要求剛開始實(shí)施時(shí),還有一定困難,有些學(xué)生還不夠自覺,通過一個(gè)階段的實(shí)踐,絕大多數(shù)學(xué)生能養(yǎng)成良好的習(xí)慣。另外,在課前預(yù)習(xí)時(shí),我有時(shí)要求學(xué)生在學(xué)習(xí)過程中進(jìn)行角色轉(zhuǎn)移,站在教師的角度想問題,這叫換位思考法。在學(xué)習(xí)每一個(gè)問題,每項(xiàng)學(xué)習(xí)內(nèi)容時(shí),先讓學(xué)生問問自己,假如我是老師,我是否弄明白了?怎樣才能給別人講清楚?這樣,學(xué)生就會(huì)產(chǎn)生一種學(xué)習(xí)的內(nèi)驅(qū)力,對每一個(gè)概念,每一個(gè)問題主動(dòng)鉆研,積極思考,自覺地把自己放在了主動(dòng)學(xué)習(xí)的位置。

2.在課堂教學(xué)中培養(yǎng)學(xué)生的自學(xué)能力。

課堂是教學(xué)活動(dòng)的主陣地,也是學(xué)生獲取知識(shí)和能力的主要渠道。作為數(shù)學(xué)教師改變以往的“一言堂”“滿堂灌”的教學(xué)方式顯得至關(guān)重要,而應(yīng)采用組織引導(dǎo),設(shè)置問題和問題情境,控制以及解答疑問的方法,形成以學(xué)生為中心的生動(dòng)活潑的學(xué)習(xí)局面,激發(fā)學(xué)生的創(chuàng)造激情,從而培養(yǎng)學(xué)生的解決問題的能力。 在尊重學(xué)生主體性的同時(shí),我也考慮到學(xué)生之間的個(gè)體差異,要因材施教,發(fā)掘出每個(gè)學(xué)生的學(xué)習(xí)潛能,盡量做到基礎(chǔ)分流,彈性管理。在教學(xué)中我采用分類教學(xué),分層指導(dǎo)的方法,使每一位同學(xué)都能夠穩(wěn)步地前進(jìn)。調(diào)動(dòng)他們的學(xué)習(xí)積極性。對于問題我沒有急于告訴學(xué)生答案,讓他們在交流中掌握知識(shí),在討論中提高能力。盡量讓學(xué)生發(fā)現(xiàn)問題,盡量讓學(xué)生質(zhì)疑問題,盡量讓學(xué)生標(biāo)新立異。 在課堂教學(xué)中,我的一個(gè)主要的教學(xué)特征就是:給學(xué)生足夠的時(shí)間,這時(shí)間包括學(xué)生的思考時(shí)間、演算時(shí)間、討論時(shí)間和深入探究問題的時(shí)間,在我的課堂上可以看到更多的是學(xué)生正在積極的思考、熱烈的討論、親自動(dòng)腦,親自動(dòng)手,不等不靠,不會(huì)將問題結(jié)果完全寄托于老師的傳授,而是在積極主動(dòng)的探索。 當(dāng)然數(shù)學(xué)教學(xué)過程作為師生雙邊活動(dòng)過程,學(xué)生的探索要依靠教師的啟發(fā)和引導(dǎo)。在教學(xué)過程中,我也從來沒有放棄對于學(xué)生的指導(dǎo),尤其在講授新課時(shí),我將教材組成一定的嘗試層次,創(chuàng)造探索活動(dòng)的環(huán)境和條件。讓學(xué)生通過觀察歸納,從特殊去探索一般,通過類比、聯(lián)想,從舊知去探索新知,收到較好的效果。

3.在課后作業(yè),反饋練習(xí)中培養(yǎng)學(xué)生自學(xué)能力。

課后作業(yè)和反饋練習(xí)、測試是檢查學(xué)生學(xué)習(xí)效果的重要手段。抓好這一環(huán)節(jié)的教學(xué),也有利于復(fù)習(xí)和鞏固舊課,還鍛煉了學(xué)生的自學(xué)能力。在學(xué)完一節(jié)、一課、一單元后,讓學(xué)生動(dòng)手“列菜單”,歸納總結(jié),要求學(xué)生盡量自己獨(dú)立完成,以便正確反饋教學(xué)效果,通過一系列的實(shí)踐活動(dòng),把每個(gè)學(xué)生的學(xué)習(xí)積極性都調(diào)動(dòng)起來,成為教學(xué)活動(dòng)的參與者和組織者。

學(xué)生自學(xué)能力的培養(yǎng)不是靠一朝一夕,要長期堅(jiān)持的,三年來就是靠著這扎扎實(shí)實(shí)的教學(xué),扎扎實(shí)實(shí)的學(xué)習(xí)才使我所教的兩個(gè)班級(jí)的學(xué)生在自學(xué)能力上得到了長足的進(jìn)步?茖W(xué)安排,課前、課堂、課后三者結(jié)合,留給學(xué)生充分的自學(xué)機(jī)會(huì)。真正把學(xué)生推向主動(dòng)地位,使其變成學(xué)習(xí)的主人,我想這是每一位教育工作者所夢寐以求的結(jié)果吧。

二、數(shù)學(xué)教育創(chuàng)新

大家都知道中學(xué)數(shù)學(xué)的教學(xué)內(nèi)容為初等數(shù)學(xué)的基礎(chǔ)知識(shí),這些基礎(chǔ)知識(shí)源遠(yuǎn)流長。不可能再有什么知識(shí)層面的創(chuàng)新了。更不可能要求學(xué)生發(fā)明創(chuàng)造什么新的初等數(shù)學(xué)的結(jié)論。因此,我個(gè)人認(rèn)為數(shù)學(xué)教育創(chuàng)新應(yīng)該著眼于學(xué)生建構(gòu)新的認(rèn)知過程,用數(shù)學(xué)的語言就是——“認(rèn)知建!。而這過程的創(chuàng)新應(yīng)該體現(xiàn)在以下三個(gè)方面:

1.勤于思考:

創(chuàng)新的前題是理解。我們知道,數(shù)學(xué)離不開概念,由概念又引伸出性質(zhì),這些性質(zhì)往往以定理或公式呈現(xiàn)出來。對定理、公式少不了要進(jìn)行邏輯推理論證,形成這些論證的理路需要思維過程。為此,我們首先必須讓學(xué)生對學(xué)習(xí)的對象有所理解。因?yàn)閿?shù)學(xué)知識(shí)的獲得主要依賴緊張思維活動(dòng)后的理解,只有透徹的理解才能溶入其認(rèn)知結(jié)構(gòu)。這就需要拼棄過去那種單靠記往教師在課堂上傳授的數(shù)學(xué)結(jié)論,然后套用這些結(jié)論或機(jī)械地模仿某種模式去解題的壞習(xí)慣。而要做到理解,就需要勤于思考。對知識(shí)和方法要多問幾個(gè)為什么?如:為什么要形成這個(gè)概念?為什么要導(dǎo)出這個(gè)性質(zhì)?這個(gè)性質(zhì)、定理、公式有什么功能?如何應(yīng)用?勤于思考的表現(xiàn)還在于對認(rèn)知過程的不斷反思、回顧,不斷總結(jié)挫折的教訓(xùn)和成功的經(jīng)驗(yàn)。避免墨守成規(guī),勇于創(chuàng)新。

2.善于提問:

學(xué)生在數(shù)學(xué)課堂中通過觀察、感知學(xué)習(xí)的對象以后,要學(xué)會(huì)分析,要有自己的見解,不要人云亦云,要善于挖掘自己尚不清楚的問題,多角度,全方位地探究,并提出質(zhì)疑。作為一個(gè)中學(xué)生,不見得也毋須什么問題都能自己解決。我們倡導(dǎo)的只是能對學(xué)習(xí)的對象提出多角度的問題,尤其是善于提出新穎的具有獨(dú)特見解的問題。我認(rèn)為會(huì)提問是創(chuàng)新的一個(gè)重要標(biāo)志。

3.解決問題:

學(xué)數(shù)學(xué)離不開解題,解題是在掌握所學(xué)知識(shí)和方法的基礎(chǔ)上進(jìn)行運(yùn)用。解題可以訓(xùn)練技巧,磨煉意志。在解題過程中,首先應(yīng)判斷解題的大方向,大致有什么思路,在引導(dǎo)學(xué)生解題的探索過程中,要注意聯(lián)想,要學(xué)會(huì)用不同的立意、不同的知識(shí)、不同的方法去思考,并善于在解題全過程監(jiān)控自己的行為:是否走彎路?是否走入死胡同?有沒有出錯(cuò)?需要及時(shí)調(diào)整,排除障礙。這樣長期形成習(xí)慣后,

往往可以別出心裁,另辟解題捷徑。這種思維品質(zhì)也是創(chuàng)新的重要標(biāo)志。為了讓學(xué)生達(dá)到這個(gè)境界,必須讓學(xué)生明確不要為解題而解題,要在解題后不斷反思、回顧,積累經(jīng)驗(yàn),增強(qiáng)解題意識(shí),提高能力。

林麗

2011.06.20

高一下數(shù)學(xué)期末總結(jié) [篇2]

本學(xué)期,本人擔(dān)任高一4班數(shù)學(xué)學(xué)科的教學(xué)工作,一學(xué)期來,本人以學(xué)校及教研組工作計(jì)劃為指導(dǎo);以提高教育教學(xué)成績?yōu)橹行,以深化課改實(shí)驗(yàn)工作為動(dòng)力,認(rèn)真履行崗位職責(zé),較好地完成了工作目標(biāo)任務(wù),現(xiàn)將一學(xué)期來的工作總結(jié)如下:

一、授人以魚,不如授人以漁

古人云:“授人以魚,不如授人以漁!币簿褪钦f,教師不僅要教學(xué)生學(xué)會(huì),而且更重要的是要學(xué)生會(huì)學(xué),這就需要教師要更新觀念,改變教法,把學(xué)生看作學(xué)習(xí)的主人,培養(yǎng)他們自覺閱讀,提出問題,釋疑歸納的能力。逐步培養(yǎng)和提高學(xué)生的自學(xué)能力,思考問題、解決問題的能力,使他們能終身受益。

1.在課前預(yù)習(xí)中培養(yǎng)學(xué)生的自學(xué)能力。

課前預(yù)習(xí)是教學(xué)中的一個(gè)重要的環(huán)節(jié)。為了抓好這一環(huán)節(jié),我常要求學(xué)生在預(yù)習(xí)中做好以下幾點(diǎn),促使他們?nèi)タ磿?dòng)腦,逐步培養(yǎng)他們的預(yù)習(xí)能力。(1)本小節(jié)主要講了哪些基本概念,有哪些注意點(diǎn)?(2)本小節(jié)還有哪些定理、性質(zhì)及公式,它們是如何得到的?(3)對照課本上的例題,你能否回答課本中的練習(xí)?(4)通過預(yù)習(xí),你有哪些疑問,把它寫在“數(shù)學(xué)摘抄本”上。這些要求剛開始實(shí)施時(shí),還有一定困難,有些學(xué)生還不夠自覺,通過一個(gè)階段的實(shí)踐,絕大多數(shù)學(xué)生能養(yǎng)成良好的習(xí)慣。

2.在課堂教學(xué)中培養(yǎng)學(xué)生的自學(xué)能力。

課堂是教學(xué)活動(dòng)的主陣地,也是學(xué)生獲取知識(shí)和能力的主要渠道。作為數(shù)學(xué)教師改變以往的“一言堂”“滿堂灌”的教學(xué)方式顯得至關(guān)重要,而應(yīng)采用組織引導(dǎo),設(shè)置問題和問題情境,控制以及解答疑問的方法,形成以學(xué)生為中心的生動(dòng)活潑的學(xué)習(xí)局面,激發(fā)學(xué)生的創(chuàng)造激情,從而培養(yǎng)學(xué)生的解決問題的能力。

3.在課后作業(yè),反饋練習(xí)中培養(yǎng)學(xué)生自學(xué)能力。

課后作業(yè)和反饋練習(xí)、測試是檢查學(xué)生學(xué)習(xí)效果的重要手段。抓好這一環(huán)節(jié)的教學(xué),也有利于復(fù)習(xí)和鞏固舊課,還鍛煉了學(xué)生的自學(xué)能力。在學(xué)完一節(jié)、一課、一單元后,讓學(xué)生動(dòng)手“列菜單”,歸納總結(jié),要求學(xué)生盡量自己獨(dú)立完成,以便正確反饋教學(xué)效果,通過一系列的實(shí)踐活動(dòng),把每個(gè)學(xué)生的學(xué)習(xí)積極性都調(diào)動(dòng)起來,成為教學(xué)活動(dòng)的參與者和組織者。

二、數(shù)學(xué)教育創(chuàng)新

創(chuàng)新應(yīng)該體現(xiàn)在以下三個(gè)方面:

1.勤于思考:

1

創(chuàng)新的前題是理解。我們知道,數(shù)學(xué)離不開概念,由概念又引伸出性質(zhì),這些性質(zhì)往往以定理或公式呈現(xiàn)出來。對定理、公式少不了要進(jìn)行邏輯推理論證,形成這些論證的理路需要思維過程。為此,我們首先必須讓學(xué)生對學(xué)習(xí)的對象有所理解。因?yàn)閿?shù)學(xué)知識(shí)的獲得主要依賴緊張思維活動(dòng)后的理解,只有透徹的理解才能溶入其認(rèn)知結(jié)構(gòu)。這就需要拼棄過去那種單靠記往教師在課堂上傳授的數(shù)學(xué)結(jié)論,然后套用這些結(jié)論或機(jī)械地模仿某種模式去解題的壞習(xí)慣。而要做到理解,就需要勤于思考。對知識(shí)和方法要多問幾個(gè)為什么?如:為什么要形成這個(gè)概念?為什么要導(dǎo)出這個(gè)性質(zhì)?這個(gè)性質(zhì)、定理、公式有什么功能?如何應(yīng)用?勤于思考的表現(xiàn)還在于對認(rèn)知過程的不斷反思、回顧,不斷總結(jié)挫折的教訓(xùn)和成功的經(jīng)驗(yàn)。避免墨守成規(guī),勇于創(chuàng)新。

2.善于提問:

學(xué)生在數(shù)學(xué)課堂中通過觀察、感知學(xué)習(xí)的對象以后,要學(xué)會(huì)分析,要有自己的見解,不要人云亦云,要善于挖掘自己尚不清楚的問題,多角度,全方位地探究,并提出質(zhì)疑。作為一個(gè)中學(xué)生,不見得什么問題都能自己解決。我們倡導(dǎo)的只是能對學(xué)習(xí)的對象提出多角度的問題,尤其是善于提出新穎的具有獨(dú)特見解的問題。我認(rèn)為會(huì)提問是創(chuàng)新的一個(gè)重要標(biāo)志。

3.解決問題:

學(xué)數(shù)學(xué)離不開解題,解題是在掌握所學(xué)知識(shí)和方法的基礎(chǔ)上進(jìn)行運(yùn)用。解題可以訓(xùn)練技巧,磨煉意志。在解題過程中,首先應(yīng)判斷解題的大方向,大致有什么思路,在引導(dǎo)學(xué)生解題的探索過程中,要注意聯(lián)想,要學(xué)會(huì)用不同的立意、不同的知識(shí)、不同的方法去思考,并善于在解題全過程監(jiān)控自己的行為:是否走彎路?是否走入死胡同?有沒有出錯(cuò)?需要及時(shí)調(diào)整,排除障礙。這樣長期形成習(xí)慣后,往往可以別出心裁,另辟解題捷徑。這種思維品質(zhì)也是創(chuàng)新的重要標(biāo)志。為了讓學(xué)生達(dá)到這個(gè)境界,必須讓學(xué)生明確不要為解題而解題,要在解題后不斷反思、回顧,積累經(jīng)驗(yàn),增強(qiáng)解題意識(shí),提高能力。

黃詠梅

2015.07

2

高一下數(shù)學(xué)期末總結(jié) [篇3]

黃流中學(xué) 王陽華

本學(xué)期我擔(dān)任高一(4)班的數(shù)學(xué)教學(xué),完成了必修2 、 5的教學(xué)。現(xiàn)將本學(xué)期高中數(shù)學(xué)必修2 、必修5的教學(xué)總結(jié)如下:

一、教學(xué)方面

1.要認(rèn)真研究課程標(biāo)準(zhǔn)。在課程改革中,教師是關(guān)鍵,教師對新課程的理解與參與是推進(jìn)課程改革的前提。認(rèn)真學(xué)習(xí)數(shù)學(xué)課程標(biāo)準(zhǔn),對課改有所了解。課程標(biāo)準(zhǔn)明確規(guī)定了教學(xué)的目的、教學(xué)目標(biāo)、教學(xué)的指導(dǎo)思想以及教學(xué)內(nèi)容的確定和安排。繼承傳統(tǒng),更新教學(xué)觀念。高中數(shù)學(xué)新課標(biāo)指出:“豐富學(xué)生的學(xué)習(xí)方式,改進(jìn)學(xué)生的學(xué)習(xí)方法是高中數(shù)學(xué)課程追求的基本理念。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不應(yīng)只限于對概念、結(jié)論和技能的記憶、模仿和接受,獨(dú)立思考、自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué)等都是學(xué)習(xí)數(shù)學(xué)的重要方式。在高中數(shù)學(xué)教學(xué)中,教師的講授仍然是重要的教學(xué)方式之一,但要注意的是必須關(guān)注學(xué)生的主體參與,師生互動(dòng)”。

2.合理使用教科書,提高課堂效益。對教材內(nèi)容,教學(xué)時(shí)需要作適當(dāng)處理,適當(dāng)補(bǔ)充或降低難度是備課必須處理的。靈活使用教材,才能在教學(xué)中少走彎路,提高教學(xué)質(zhì)量。對教材中存在的一些問題,教師應(yīng)認(rèn)真理解課標(biāo),對課標(biāo)要求的重點(diǎn)內(nèi)容要作適量的補(bǔ)充;對教材中不符合學(xué)生實(shí)際的題目要作適當(dāng)?shù)恼{(diào)整。此外,還應(yīng)把握教材的“度”,不要想一步到位,如函數(shù)性質(zhì)的教學(xué),要多次螺旋上升,逐步加深。

3.改進(jìn)學(xué)生的學(xué)習(xí)方式,注意問題的提出、探究和解決。教會(huì)學(xué)生發(fā)現(xiàn)問題和提出問題的方法。以問題引導(dǎo)學(xué)生去發(fā)現(xiàn)、探究、歸納、總結(jié)。引導(dǎo)他們更加主動(dòng)、有興趣的學(xué),培養(yǎng)問題意識(shí)。

4.在課后作業(yè),反饋練習(xí)中培養(yǎng)學(xué)生自學(xué)能力。

課后作業(yè)和反饋練習(xí)、測試是檢查學(xué)生學(xué)習(xí)效果的重要手段。抓好這一環(huán)節(jié)的教學(xué),也有利于復(fù)習(xí)和鞏固舊課,還鍛煉了學(xué)生的自學(xué)能力。在學(xué)完一課、一單元后,讓學(xué)生主動(dòng)歸納總結(jié),要求學(xué)生盡量自己獨(dú)立完成,以便正確反饋教學(xué)效果。

二 存在困惑

1.書本習(xí)題都較簡單和基礎(chǔ),而我們的教輔題目偏難,加重了學(xué)生的學(xué)習(xí)負(fù)擔(dān),而且學(xué)生完成情況很不好。課時(shí)又不足,教學(xué)時(shí)間緊,沒時(shí)間講評(píng)這些練習(xí)題。

2.在教學(xué)中,經(jīng)常出現(xiàn)一節(jié)課的教學(xué)任務(wù)完不成的現(xiàn)象,更少鞏固練習(xí)的時(shí)間。勉強(qiáng)按規(guī)定時(shí)間講完,一些學(xué)生聽得似懂非懂,造成差生越來越多。而且知識(shí)內(nèi)容需要補(bǔ)充的內(nèi)容有:乘法公式;因式分解的十字相乘法;一元二次方程及根與系數(shù)的關(guān)系;根式的運(yùn)算;解不等式等知識(shí)。

3.雖然經(jīng)常要求學(xué)生課后要去完成教輔上的精選的題目,但是,相當(dāng)部分的同學(xué)還是沒辦法完成。學(xué)生的課業(yè)負(fù)擔(dān)太重,有的學(xué)生則是學(xué)習(xí)意識(shí)淡薄。

三、今后要注意的幾點(diǎn)

1.要處理好課時(shí)緊張與教學(xué)內(nèi)容多的矛盾,加強(qiáng)對教材的研究;

2.注意對教輔材料題目的精選;

3.要加強(qiáng)對數(shù)學(xué)后進(jìn)生的思想教育。 走進(jìn)2011年,社會(huì)對教師的素質(zhì)要求更高,在今后的教育教學(xué)工作中,我將更嚴(yán)格要求自己,努力工作,發(fā)揚(yáng)優(yōu)點(diǎn),改正缺點(diǎn),開拓前進(jìn),是需要繼續(xù)努力的方向。作為教師本人也希望能夠在自己今后的科研、教學(xué)上有所突破,抓住機(jī)遇,爭取機(jī)會(huì),創(chuàng)造成績。

高一下數(shù)學(xué)期末總結(jié) [篇4]

一、集合有關(guān)概念 1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。 2、集合的中元素的三個(gè)特性:

1.元素的確定性; 2.元素的互異性;3.元素的無序性 .第一章 集合與函數(shù)概念

一、集合有關(guān)概念

1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。

2、集合的中元素的三個(gè)特性:

1.元素的確定性; 2.元素的互異性; 3.元素的無序性

說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

3、集合的表示:{ } 如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋}

1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}

2.集合的表示方法:列舉法與描述法。

注意。撼S脭(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

關(guān)于“屬于”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。 ①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

4、集合的分類:

1.有限集 含有有限個(gè)元素的集合

2.無限集 含有無限個(gè)元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B或集合B不包含集合A記作A B或B A

2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

實(shí)例:設(shè) A={x|x2-1=0} B={-11} “元素相同”

結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的.任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

① 任何一個(gè)集合是它本身的子集。A?A

②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 A?B B?C 那么 A?C

④ 如果A?B 同時(shí) B?A 那么A=B

3. 不含任何元素的集合叫做空集,記為Φ

規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的運(yùn)算

1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.

記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集與并集的性質(zhì):A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A A∪φ= A A∪B = B∪A.

4、全集與補(bǔ)集

(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

記作: CSA 即 CSA ={x ? x?S且 x?A}

(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。

(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函數(shù)的有關(guān)概念

1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

三角函數(shù)公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數(shù)列前n項(xiàng)和

1+2+3+4+5+6+7+8+9++n=n(n+1)/2

1+3+5+7+9+11+13+15++(2n-1)=n2

2+4+6+8+10+12+14++(2n)=n(n+1)

12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理

判別式

b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根

b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根

b2-4ac<0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

降冪公式

(sin^2)x=1-cos2x/2

(cos^2)x=i=cos2x/2

萬能公式

令tan(a/2)=t

sina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

§1.2.1、函數(shù)的概念

1、 設(shè)A、B是非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系,使對于集合A中的任意一個(gè)數(shù),在集合B中都有惟一確定的數(shù)和它對應(yīng),那么就稱為集合A到集合B的一個(gè)函數(shù),記作:.

2、 一個(gè)函數(shù)的構(gòu)成要素為:定義域、對應(yīng)關(guān)系、值域.如果兩個(gè)函數(shù)的定義域相同,并且對應(yīng)關(guān)系完全一致,則稱這兩個(gè)函數(shù)相等.

§1.2.2、函數(shù)的表示法

1、 函數(shù)的三種表示方法:解析法、圖象法、列表法.

§1.3.1、單調(diào)性與最大(小)值

1、 注意函數(shù)單調(diào)性證明的一般格式:

§1.3.2、奇偶性

1、 一般地,如果對于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就稱函數(shù)為偶函數(shù).偶函數(shù)圖象關(guān)于軸對稱.

2、 一般地,如果對于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就稱函數(shù)為奇函數(shù).奇函數(shù)圖象關(guān)于原點(diǎn)對稱.

高一下數(shù)學(xué)期末總結(jié) [篇5]

本學(xué)期我擔(dān)任高一11、12兩個(gè)美術(shù)班的數(shù)學(xué)教學(xué)工作。經(jīng)過一個(gè)學(xué)期的努力,我獲取了很多寶貴的教學(xué)經(jīng)驗(yàn)。以下是我在本學(xué)期的教學(xué)情況總結(jié):

一、學(xué)情分析

教學(xué)就是教與學(xué),兩者是相互聯(lián)系,不可分割的,有教者就必然有學(xué)者。學(xué)生是被教的主體。因此,了解和分析學(xué)生情況,有針對地教對教學(xué)成功與否至關(guān)重要。 一方面,部分的學(xué)生,入學(xué)成績較差,也就是初中時(shí)的基礎(chǔ)較差,另一方面,上課比較活躍,上課氣氛非常積極,但中等生、差等生占較大的比例,尖子生相對比較少。因此,講得太深,沒有照顧到整體,我備課時(shí)也沒有注意到這點(diǎn),因此教學(xué)效果不是很理想。從此可以看出,了解及分析學(xué)生實(shí)際情況,實(shí)事求是,具體問題具體分析,做到因材施教,對授課效果有直接影響,這根提高數(shù)學(xué)高效課堂有很大的關(guān)系。這就是教育學(xué)中提到的“備教法的同時(shí)要備學(xué)生”。這一理論在我的教學(xué)實(shí)踐中得到了驗(yàn)證。

二、教學(xué)措施

1、備課充分,上好一堂課的前提

教學(xué)中,備課是一個(gè)必不可少,十分重要的環(huán)節(jié),備學(xué)生,又要備教法。備課不充分或備得不好,會(huì)嚴(yán)重影響課堂氣氛和積極性,曾有一位前輩對我說:“備課備不好,倒不如不上課,否則就是白費(fèi)心機(jī)”。我明白到備課的重要性,因此,每天我都花費(fèi)大量的時(shí)間在備課之上,認(rèn)認(rèn)真真鉆研教材和教法,不滿意就不收工。雖然辛苦,但事實(shí)證明是值得的。

一堂準(zhǔn)備充分的課,會(huì)令學(xué)生和老師都獲益不淺。如果照本宣科地講授,學(xué)生會(huì)感到困難和沉悶。為了上好這堂課,我認(rèn)真研究了教材,找出了重點(diǎn),難點(diǎn),準(zhǔn)備有針對性地講。為了令教學(xué)生動(dòng),不沉悶,我還為此準(zhǔn)備了大量的比較感興趣的事例和教具,授課時(shí)就胸有成竹了。

備課充分,能調(diào)動(dòng)學(xué)生的積極性,上課效果就好。但同時(shí)又要有駕馭課堂的能力,因?yàn)閷W(xué)生在課堂上的一舉一動(dòng)都會(huì)直接影響課堂教學(xué)。因此上課一定要設(shè)法令學(xué)生投入,不讓其分心,這就很講究方法了。上課內(nèi)容豐富,現(xiàn)實(shí)。教態(tài)自然,講課生動(dòng),難易適中照顧全部,就自然能夠吸引住學(xué)生。所以,老師每天都要有充足的精神,讓學(xué)生感受到一種自然氣氛。這樣,授課就事半功倍;乜醋约旱氖谡n,我感到有點(diǎn)愧疚,因?yàn)橛袝r(shí)我并不能很好地做到這點(diǎn)。當(dāng)學(xué)生在課堂上無心向?qū)W,違反紀(jì)律時(shí),我的情緒就受到影響,并且把這帶到教學(xué)中,讓原本正常的講課受到?jīng)_擊,發(fā)揮不到應(yīng)有的水平,以致影響教學(xué)效果。我以后必須努力克服,研究方法,采取有利方法解決當(dāng)中困難。

2、激發(fā)學(xué)生的學(xué)習(xí)興趣

數(shù)學(xué)是一門工具學(xué)科,對學(xué)生而言,既熟悉又困難,在這樣一種大環(huán)境之下,要教好數(shù)學(xué),就要讓學(xué)生喜愛數(shù)學(xué),讓他們對數(shù)學(xué)產(chǎn)生興趣。否則學(xué)生對這門學(xué)科產(chǎn)生畏難情緒,不愿學(xué),也無法學(xué)下去。為此,我采取了一些方法,就是盡量多講一些笑話和數(shù)學(xué)典故,讓他們更了解數(shù)學(xué),更喜歡學(xué)習(xí)數(shù)學(xué)。只有激發(fā)

學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣,才能提高同學(xué)們的解題能力,對成績優(yōu)秀的同學(xué)很有好處。

3、及時(shí)反饋學(xué)生學(xué)習(xí)情況

因?yàn)閿?shù)學(xué)的特殊情況,學(xué)生在不斷學(xué)習(xí)中,會(huì)出現(xiàn)好差兩極分化的現(xiàn)象,差生面擴(kuò)大,會(huì)嚴(yán)重影響班內(nèi)的學(xué)習(xí)風(fēng)氣。因此,絕對不能忽視。為此,我制定了具體的計(jì)劃和目標(biāo)。對這部分同學(xué)進(jìn)行有計(jì)劃的輔導(dǎo)。數(shù)學(xué)是語言。因此,除了課堂效果之外,還需要讓學(xué)生多想,多練。為此,在自習(xí)課時(shí),我堅(jiān)持下班了解自習(xí)課情況,發(fā)現(xiàn)問題及時(shí)糾正。課后發(fā)現(xiàn)學(xué)生作業(yè)問題也及時(shí)解決,及時(shí)講清楚,讓學(xué)生即時(shí)消化。另外,對部分不自覺的同學(xué)還采取扎實(shí)基礎(chǔ)的方式,先打?qū)嵥麄兊幕A(chǔ),然后想辦法提高他們的能力。

4、多種教學(xué)方法的使用

在教學(xué)過程中,使用講練結(jié)合、點(diǎn)撥法、讓學(xué)生講一堂課、講一道題等方式,目的是提高學(xué)生的聽課效率。

5、嚴(yán)格要求

對學(xué)生的學(xué)習(xí)習(xí)慣的養(yǎng)成,比方說書寫的認(rèn)真和規(guī)范程度,做題的步驟等,都有嚴(yán)格的要求,如果那些同學(xué)犯了,我會(huì)及時(shí)找學(xué)生談話,或者提問相關(guān)的知識(shí)點(diǎn)。

三、認(rèn)真聽取學(xué)生對數(shù)學(xué)課的意見和建議

由于在課堂教學(xué)過程中,第一周的學(xué)生情況不是很好,作業(yè)完成情況也不樂觀,解題格式不清楚,概念混淆等情況時(shí)有發(fā)生。因此,我經(jīng)常把他們對數(shù)學(xué)課的感受以及意見和建議都寫在紙條上交上來(無記名方式),我在閱讀他們的意見和建議的過程中,發(fā)現(xiàn)了許多自身的不足和學(xué)生的基本情況:

1、講多練少。這一點(diǎn)在之后的教學(xué)過程中已經(jīng)逐步改善。

2、課堂例題應(yīng)以課本為主,出題要有針對性,還要從易到難逐步遞進(jìn)。

3、題目講解、分析要清晰明了,步驟要分明。這方面在聽取多位老教師講課后,大為改觀,尤為體現(xiàn)在作業(yè)完成情況上,解題格式明顯清晰許多。

4、上課互動(dòng)性的增強(qiáng):在課堂中,對學(xué)生完成課堂練習(xí)的情況進(jìn)行分析,分析學(xué)生的解題情況,通過提問其他學(xué)生,讓全班學(xué)生幫助分析錯(cuò)題原因,做到講、練、評(píng)的有效結(jié)合。

以上就是我在本學(xué)期的數(shù)學(xué)教學(xué)工作總結(jié)。由于經(jīng)驗(yàn)頗淺,許多地方存在不足,希望在未來的日子里,能在學(xué)校領(lǐng)導(dǎo)老師、前輩們的指導(dǎo)下,取得更好成績。

任課教師:周文靜

科目:高一數(shù)學(xué)

時(shí)間:2015.1.18

【高一下數(shù)學(xué)期末總結(jié)】相關(guān)文章:

高一下物理期末總結(jié)07-28

高一下學(xué)生期末總結(jié)07-27

高一下期期末總結(jié)07-25

高一下的期末總結(jié)(精選12篇)07-03

高一下學(xué)期末總結(jié)07-28

對高一下冊的期末總結(jié)(精選5篇)06-11

數(shù)學(xué)期末總結(jié)06-30

數(shù)學(xué)學(xué)科期末總結(jié)07-26

期末數(shù)學(xué)教學(xué)總結(jié)12-09