欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

初二數(shù)學(xué)知識點整理

時間:2024-08-23 10:11:38 林惜 初二 我要投稿
  • 相關(guān)推薦

人教版初二數(shù)學(xué)知識點匯總整理

  在平日的學(xué)習(xí)中,不管我們學(xué)什么,都需要掌握一些知識點,知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。你知道哪些知識點是真正對我們有幫助的嗎?以下是小編幫大家整理的人教版初二數(shù)學(xué)知識點匯總整理,歡迎大家分享。

人教版初二數(shù)學(xué)知識點匯總整理

  初二數(shù)學(xué)知識點解析

  (一)運用公式法:

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

  (二)平方差公式

  平方差公式

  (1)式子:a2-b2=(a+b)(a-b)

  (2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。

  (三)因式分解

  1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進一步分解。

  2.因式分解,必須進行到每一個多項式因式不能再分解為止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。

  把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

  上面兩個公式叫完全平方公式。

  (2)完全平方式的形式和特點

 、夙棓(shù):三項

 、谟袃身検莾蓚數(shù)的的平方和,這兩項的符號相同。

  ③有一項是這兩個數(shù)的積的兩倍。

  (3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

  (5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

  (五)分組分解法

  我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

  如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  =(m+n)??(a+b).

  這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.

  (六)提公因式法

  1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結(jié)構(gòu)特點,確定多項式的公因式.當(dāng)多項式各項的公因式是一個多項式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當(dāng)多項式各項的公因式是隱含的時候,要把多項式進行適當(dāng)?shù)淖冃,或改變符號,直到可確定多項式的公因式.

  數(shù)學(xué)是被很多人稱之?dāng)r路虎的一門科目,同學(xué)們在掌握數(shù)學(xué)知識點方面還很欠缺,為此小編為大家整理了初二數(shù)學(xué)知識點歸納:一次函數(shù)知識點總結(jié),希望能夠幫助到大家。

  以上內(nèi)容由獨家專供,希望這篇初二數(shù)學(xué)知識點歸納:一次函數(shù)知識點總結(jié)能夠幫助到大家。

  2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:

  1.必須先將常數(shù)項分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于一次項的系數(shù).

  2.將常數(shù)項分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:

 、倭谐龀(shù)項分解成兩個因數(shù)的積各種可能情況;

  ②嘗試其中的哪兩個因數(shù)的和恰好等于一次項系數(shù).

  3.將原多項式分解成(x+q)(x+p)的形式.

  (七)分式的乘除法

  1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

  2.分式進行約分的目的是要把這個分式化為最簡分式.

  3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

  4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,

  (x-y)3=-(y-x)3.

  5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.

  6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.

  (八)分數(shù)的加減法

  1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.

  2.通分和約分都是依據(jù)分式的基本性質(zhì)進行變形,其共同點是保持分式的值不變.

  3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

  4.通分的依據(jù):分式的基本性質(zhì).

  5.通分的關(guān)鍵:確定幾個分式的公分母.

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.

  6.類比分數(shù)的通分得到分式的通分:

  把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

  同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉(zhuǎn)化為整式運算。

  8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p.

  9.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式.

  (九)含有字母系數(shù)的一元一次方程

  1.含有字母系數(shù)的一元一次方程

  引例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程ax=b(a≠0)

  在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項。這個方程就是一個含有字母系數(shù)的一元一次方程。

  含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。

  同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.

  對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

  異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.

  初二數(shù)學(xué)知識點總結(jié):基本方法

  1、配方法

  所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法

  因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

  3、換元法

  換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、判別式法與韋達定理

  一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。

  韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。

  7、反證法

  反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

  反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。

  歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴謹。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

  軸對稱圖形

  1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。

  2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應(yīng)點,叫做對稱點

  3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系

  4.軸對稱與軸對稱圖形的性質(zhì)

 、訇P(guān)于某直線對稱的兩個圖形是全等形。

 、谌绻麅蓚圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。

 、圯S對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。

  ④如果兩個圖形的對應(yīng)點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

 、輧蓚圖形關(guān)于某條直線成軸對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上。

  線段的垂直平分線

  1.定義:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

  2.性質(zhì):線段垂直平分線上的點與這條線段的兩個端點的距離相等

  3.判定:與一條線段兩個端點距離相等的點,在線段的垂直平分線上

  用坐標表示軸對稱小結(jié):

  1.在平面直角坐標系中

 、訇P(guān)于x軸對稱的點橫坐標相等,縱坐標互為相反數(shù);

  ②關(guān)于y軸對稱的點橫坐標互為相反數(shù),縱坐標相等;

 、坳P(guān)于原點對稱的點橫坐標和縱坐標互為相反數(shù);

  ④與X軸或Y軸平行的直線的兩個點橫(縱)坐標的關(guān)系;

 、蓐P(guān)于與直線X=C或Y=C對稱的坐標

  點(x,y)關(guān)于x軸對稱的點的坐標為(x,-y).

  點(x,y)關(guān)于y軸對稱的點的坐標為(-x,y).

  2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等

 。ǖ妊切)知識點回顧

  1.等腰三角形的性質(zhì)

  ①.等腰三角形的兩個底角相等。(等邊對等角)

  ②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

  理解:已知等腰三角形的一線就可以推知另兩線。

  2、等腰三角形的判定:

  如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)

 。ǖ冗吶切危┲R點回顧

  1.等邊三角形的性質(zhì):

  等邊三角形的三個角都相等,并且每一個角都等于600。

  2、等邊三角形的判定:

 、偃齻角都相等的三角形是等邊三角形。

  ②有一個角是600的等腰三角形是等邊三角形。

  3.在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。

  為什么要學(xué)習(xí)數(shù)學(xué)

  作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會對數(shù)學(xué)產(chǎn)生排斥,認為它枯燥無味,但事實上,數(shù)學(xué)是所有學(xué)科的基石之一,對我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細闡述學(xué)習(xí)數(shù)學(xué)的重要性。

  首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們在學(xué)習(xí)的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復(fù)雜問題時更能得心應(yīng)手。

  其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計算機科學(xué)、物理學(xué)、經(jīng)濟學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測趨勢,并且可以在實際應(yīng)用中優(yōu)化和改進。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時,在工程學(xué)領(lǐng)域,許多機械、電子、化工等產(chǎn)品的設(shè)計和制造過程,也需要運用到數(shù)學(xué)知識,因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數(shù)學(xué)也是一種普遍使用的語言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語言進行表達和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學(xué)和商科領(lǐng)域,經(jīng)濟學(xué)和金融學(xué)運用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計學(xué)等,使得我們能夠更好地理解經(jīng)濟和財務(wù)數(shù)據(jù),并進行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個領(lǐng)域的知識。

  最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數(shù)據(jù)科學(xué)、研究機構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領(lǐng)域脫穎而出。

  學(xué)好數(shù)學(xué)要重視“四個依據(jù)”是什么

  讀好一本教科書——它是教學(xué)、考試的主要依據(jù);

  記好一本筆記 ——它是教師多年經(jīng)驗的結(jié)晶;

  做好一本習(xí)題集——它是知識的拓寬;

  記好一本心得筆記——它是你自己的知識。

【初二數(shù)學(xué)知識點整理】相關(guān)文章:

初二數(shù)學(xué)知識點整理10-27

人教版初二語文知識點整理10-31

初二物理力的知識點整理07-18

初二物理下冊重力知識點整理09-06

小學(xué)數(shù)學(xué)知識點整理大全12-14

江蘇高考數(shù)學(xué)知識點整理06-09

初三數(shù)學(xué)知識點的整理06-20

初三數(shù)學(xué)知識點整理07-27

高考數(shù)學(xué)易錯知識點整理10-14

關(guān)于小升初數(shù)學(xué)復(fù)習(xí)知識點整理07-13