- 相關(guān)推薦
九年級下冊數(shù)學(xué)練習(xí)題
導(dǎo)讀:想要學(xué)好數(shù)學(xué),一定要多做同步練習(xí),以下是應(yīng)屆畢業(yè)生小編為大家準(zhǔn)備的九年級下冊數(shù)學(xué)練習(xí)題,主要是針對每一單元學(xué)過的知識來鞏固自己所學(xué)過的內(nèi)容,希望對大家有所幫助!
一、選擇題(本大題共 小題,每小題 分,共 分,在每小題給出的四個選項(xiàng)中,只有一個選項(xiàng)是正確的,請把答案寫在答題紙相應(yīng)的位置)
1. 的倒數(shù)是 ( )
A.2 B.-2 C. D.
2.如圖是某幾何體的三視圖,這個幾何體是( )
A.圓錐 B.圓柱 C.正三棱柱 D.三棱錐,
3.下列圖象一定不是中心對 稱圖形的是 ( )
A.圓 B.一次函數(shù)的圖象 C.反比例函數(shù)的圖象 D.二次函數(shù)的圖象
4.某市今年4月份一周空氣質(zhì)量報(bào)告中某污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
A.32,31 B.31,32 C.31,31 D.32,35
5.下列多邊形中,內(nèi)角和等于外角和的是( )
A.三邊形 B.四邊形 C.五邊形 D.六邊形
6.下列運(yùn)算正確的是( )
A.(3xy2)2=6xy4 B.2x-2= C.(-x)7(-x)2=-x5 D.(6xy2)23xy=2y
7.如圖,若A、B、C、P、Q、甲、乙、丙、丁都是方格紙中的格點(diǎn),為使△PQR∽△ABC,則點(diǎn)R應(yīng)是甲、乙、丙、丁四點(diǎn)中的( )
A.甲 B.乙 C.丙 D.丁
8.如圖,⊙ 的半徑為1,點(diǎn) 到直線 的距離 為2,點(diǎn) 是直線 上的一個動點(diǎn), 切⊙ 于點(diǎn) ,則 的最小值是( )
A.1 B. C. 2 D.
二、填空題(本大題共 小題,每小題 分,共 分,把答案填寫在答題紙相應(yīng)位置上)
9.單項(xiàng)式 的 系數(shù)為 .
10.分解因式: = .
11.在函數(shù) 中,自變量x的取值范圍是 .
12.據(jù)市旅游局統(tǒng)計(jì),今年五一小長假期間,我市旅游市場走勢良好,假期旅游總收入達(dá)到7.55億元,7.55億元用科學(xué)記數(shù)法可以表示為 元
13.已知扇形的弧長為 cm,面 積為 cm2,扇形的半徑是 cm.
14.下列函數(shù)中,當(dāng) ﹤-1時,函數(shù)值 隨 的增大而增大的有 個.
① ② ③ ④
15.如圖,點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),過點(diǎn)P向x軸作垂線,垂足為M,連結(jié)PO,若陰影部分面積為6,則這個反比例函數(shù)的關(guān)系式是 .
16.已知兩圓的半徑分別為2和3,兩圓的圓心距為4,那么這兩圓的位置關(guān)系是 .
17.如圖,每一幅圖中均含有若干個正方形,第1幅圖中有1 個正方形;第2幅圖中有5個正方形按這樣的規(guī)律下去,第7幅圖中有 個正方形.
18.已知關(guān)于 的函數(shù) 的圖像與坐標(biāo)軸共有兩個公共點(diǎn),則m的值為 .
三、解答題(本大題共10題,共96分,解答應(yīng)寫出必要的計(jì)算過程、推演步驟或文字說明)
19.(本題滿分8分,每題4分)
(1)計(jì)算: (2) 解方程:
. 20.(本題滿分8分) 先化簡,再求值: ,其中x是方程x2+x-6=0的根.
21.(本題滿分8分)為了解某校八年級學(xué)生課外閱讀的情況,隨機(jī)抽取了該校八年級部分學(xué)生進(jìn)行書籍種類問卷調(diào)查(每人選只選一種書籍)。如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1) 這次活動一共調(diào)查了_________名學(xué)生;
(2) 在扇形統(tǒng)計(jì)圖中 漫畫所在的扇形圓心角等于_________度;
(3) 補(bǔ)全條形統(tǒng)計(jì)圖;
(4) 若該年級有900人,請你估計(jì)該年級喜歡科普的學(xué)生人數(shù)約是_________人.
22.(本題滿分8分) 如圖,李明在大樓27米高
(即 米)的窗口 處進(jìn)行觀測,測得山坡上 處的俯角 ,山腳B處的俯角,已知該山坡的坡度i(即 )為 ,點(diǎn) 在同一個平面內(nèi).
點(diǎn) 在同一條直線上,且 .
(1) 山坡坡角(即 )的度數(shù)等于
(2) 求 的長(結(jié)果保留根號).
23.(本題滿分10 分)已知:如圖,D是△ABC的邊AB上一點(diǎn),
CN∥AB,DN交AC于點(diǎn)M,MA=MC.
(1)求證:CD=AN;
(2)若AMD=2MCD,試判斷四邊形ADCN的形狀,并說明理由.
24.(本題滿分10分)某校九年級共有6個班,需從中選出兩個班參加一項(xiàng)重大活動,九(1)班是先進(jìn)班集體必須參加,再從另外5個班中選出一個班。九(4)班同學(xué)建議用如下方法選班:從裝有編號為1,2,3的三個白球的 袋中摸出一個球,再從裝有編號也為1,2,3的三個紅球的 袋中摸出一個球(兩袋中球的大小、形狀與質(zhì)地完全一樣),摸出的兩個球編號之和是幾就派幾班參加.
(1) 請用列表或畫樹狀圖的方法求選到九(4)班的概率;
(2) 這一建議公平嗎?請說明理由.
25.(本題滿分10分)
如圖,已知點(diǎn) 在 的邊 上, , 的平分線交 于點(diǎn) ,且 在以 為直徑的⊙ 上.
(1) 證明: 是⊙ 的切線;
(2) 若 ,求圓心 到AD的距離;
(3) 若 ,求 的值.
26.(本題滿分10分)已知 A、B兩地相距630千米,在A、B之間有汽車站C站,如圖1所示. 客車由A 地駛向C站、貨車由B地駛向A地,兩車同時出發(fā),勻速行駛,貨車的速度是客車速度的 34 . 圖2 是客、貨車離C站的路程y1、y2(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.
(1)求客、貨兩車的速度;
(2)求兩小時后,貨車離C站的路程y2與
行駛時間x之間的函數(shù)關(guān)系式;
(3)求E點(diǎn)坐標(biāo),并說明點(diǎn)E的實(shí)際意義.
27.(本題滿分12分)
如圖1,正方形ABCD的對角線AC與BD相交于點(diǎn)M,正方形MNPQ與正方形ABCD全等,將正方形MNPQ繞點(diǎn)M順時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,射線MN與射線MQ分別交正方形ABCD的邊于E、F兩點(diǎn)。
(1)試判斷ME與MF之間的數(shù)量關(guān)系,并給出證明.
(2)若將原題中的兩個正方形都改為矩形且BC =6,AB =2,如圖2,其他條件不變,探索線段ME與線段MF的數(shù)量關(guān)系.
28(本題滿分12分)如圖,二次函數(shù) 的圖象與 、 軸交于 三點(diǎn),其中 ,拋物線的頂點(diǎn)為 .
(1) 求 的值及頂點(diǎn) 的坐標(biāo);
(2)當(dāng) 時,函數(shù)y的最小值為 ,最大值為 ,求a,b應(yīng)滿足的條件.
(3) 在y軸右側(cè)的拋物線上是否存在點(diǎn)P,使得三角形PDC是等腰三角形?如果存在,求出符合條件的點(diǎn)P的坐標(biāo);如果不存在,請說明理由。
參考答案
一、選擇題(本大題共8小題,每小題3分, 共24分,)
題號12345678
答案BADCBCCB
二、填空題(本大題共10小題,每小題3分,共30分)
9、5 10、 11、x 12、 13、2.
14、3 15、 16、相交 17、140 18、-4 , -3 , 0 , 1
三、解答題(本大題共10題,共96分,解答應(yīng)寫出必要的計(jì)算過程、推演步驟或文字說明)
19(本題滿分8分,每小題4分).
(1) 3分
4分.
(2)解得 x=7 3分.
檢驗(yàn):x=7時 , x-7=0
所以x=7是原方程的增根 ,原方程的無解 4分.
20.(本題滿分8分)
化簡得 , 4分.
由x2+x-6=0得x=-3或x=2(原分式無意義,舍去) 6分.
x=-3時 8分.
21.(本題滿分8分,每小題2分)
(1)200 (2)72 (3) 如圖(4) 270
22(本題滿分8分)
解: (1)30. 2分
(2) 由題意知過點(diǎn)P的水 平線為PQ,
3分
5分
答: 。 6分
23. (本題滿分10分)
證明:①∵CN∥AB,DAC=NCA,
∵在△AMD和△CMN中,
, △AMD≌△CMN(ASA),(2分)
AD=CN, 又∵AD∥CN, 四邊形ADCN是平行四邊形,(4分)
CD=AN (5分)
、 四邊形ADCN是矩形.(1分)
理由如下 ∵AMD=2MCD,AMD=MCD+MDC,
MCD=MDC MD=MC, (2分)
由①知四邊形ADCN是平行四邊形,MD=MN=MA=MC, AC=DN,(4分)
四邊形ADCN是矩形.(5分)
24. (本題滿分10分)
(1)
3分
5分
(2)不公平
不公平。 5分
25(本題滿分10分)
(1)連接OD,∵AD平分BAC,BAD=DAC, ∵OA=OD,BAD=ODA,
ODA=DAC,AC∥OD,∵C=90,ODC=90,
即BC是⊙O的切線。4分
(2)在Rt△ADC中,ACD=90,由勾股定理,
得:
,作 根據(jù)垂徑定理得
可證 △AOF∽△ADC
3分
(3)連接ED∵AD平分BAC,BAD=DAC,
∵AE為直徑,ADE=90
△BED∽△BDA, 3分
26.(本題10分)
(1)設(shè)客車的速度為a km/h,則貨車的速度為 km/h.
9a+ 2=630 解之, a=60 =45 -----3分
答:客車的速度為60 km/h,貨車的速度為45km/h -----4分
(2) 方法一:由(1)可知 P(14,540)
∵D (2,0)
y2=45x-90
方法二:由(1)知,貨車的速度為45km/h,
兩小時后貨車的行駛時間為(x-2)
y2=45(x-2)=45x-90------3分
(3)
方法一:∵F(9,0) M(0,540)
y1=-60x+540
由 y=-60x+540
y=45x-90 解之
E (6,180)
方法二:點(diǎn)E表示兩車離C站路程相同,結(jié)合題意,兩車相遇
可列方程:45x+60x=630
x=6
540 -60x=180
E (6,180) ------2分
點(diǎn)E的實(shí)際意義:行駛6小時時,兩車相遇,此時距離C站180km. ----3分
27. (本題滿分12分)
(1)證明:過點(diǎn)M作MGBC于點(diǎn)G,MHCD于點(diǎn)H.
MGE=MHF=90.
∵M(jìn)為正方形對角線AC、BD的交點(diǎn),MG=MH.
又∵GMQ=GMQ=90,2.
在△MGE和△MHF中
1=2,
MG=MH,
MGE=MHF. △MGE≌△MHF. ME=MF.---(5分)
(2)解:①當(dāng)射線MN交BC于點(diǎn)E,射線MQ交CD于點(diǎn)F時.
過點(diǎn)M作MGBC于點(diǎn)G,MHCD于點(diǎn)H.MGE=MHF=90.
∵M(jìn)為矩形對角線AC、BD的交點(diǎn),GMQ=GMQ=90.
2.
在△MGE和△MHF中,
2
MGE=MHF △MGE∽△MHF.
∵M(jìn)為矩形對角線AB、AC的交點(diǎn),MB=MD=MC
又∵M(jìn)GBC,MHCD,
點(diǎn)G、H分別是BC、DC的中點(diǎn).
∵BC=6,AB=2, MG=1,MH=3
. (2分)
、诋(dāng)射線MN交AB于 點(diǎn)E,射線MQ交BC于點(diǎn)F時.
過點(diǎn)M作MGAB于點(diǎn)G,MHBC于點(diǎn)H.MGE=MHF=90.
∵M(jìn)為矩形對角線AC、BD的交點(diǎn),GMQ=GMQ=90.
2.
在△MGE和△MHF中,
2,
MGE=MHF. △MGE∽△MHF.
∵M(jìn)為矩形對角線AC、BD的交點(diǎn), MB=MA=MC.
又∵M(jìn)GAB,MHBC,
點(diǎn)G、H分別是AB、BC的中點(diǎn).
∵BC=6,AB=2 ,
(4分)
.③當(dāng)射線MN交BC于點(diǎn)E,射線MQ交BC于點(diǎn)F時.
由△MEH∽△FMH,得
由△MEH∽△FEM,得
△FMH∽△FEM.
(6分)
④當(dāng)射線MN交BC邊于E點(diǎn),射線MQ交AD于點(diǎn)F時.
延長FM交BC于點(diǎn)G.
易證△MFD≌△MGB.MF=MG.
同理由③得 (7分)
綜上所述:ME與MF的數(shù)量關(guān)系是
28.(本題滿分12分)
(1)把 2分
4分
(3)x=0時,y=3,故C坐標(biāo)為 ,
如圖1,當(dāng)DC=DP時,點(diǎn)P與點(diǎn)C關(guān)于拋物線的對稱軸x=1對稱,故點(diǎn)P坐標(biāo)為
1分
如圖2,當(dāng)PC=PD時,可證得HD=HC,PM=PN,設(shè) 則
P的坐標(biāo)為 或 3分
如圖3,當(dāng)CD=CP時,不符合題意。
綜上所述:P的標(biāo)為 ,或 或 4分
這篇2015人教版九年級下冊數(shù)學(xué)練習(xí)題就為大家分享到這里了。希望對大家有所幫助!
【九年級下冊數(shù)學(xué)練習(xí)題】相關(guān)文章:
人教版九年級下冊數(shù)學(xué)練習(xí)題09-01
小學(xué)五年級下冊數(shù)學(xué)練習(xí)題09-13
六年級數(shù)學(xué)下冊精選練習(xí)題10-19