- 相關(guān)推薦
關(guān)于如何攻克小升初奧數(shù)必考的四大知識點(diǎn)
在平時的學(xué)習(xí)中,大家都背過各種知識點(diǎn)吧?知識點(diǎn)在教育實踐中,是指對某一個知識的泛稱。為了幫助大家更高效的學(xué)習(xí),下面是小編整理的關(guān)于如何攻克小升初奧數(shù)必考的四大知識點(diǎn),歡迎大家借鑒與參考,希望對大家有所幫助。
如何攻克小升初奧數(shù)必考的四大知識點(diǎn)
眾所周知,要實現(xiàn)“笑勝出”,孩子在重點(diǎn)中學(xué)的數(shù)學(xué)測驗中脫穎而出是十分必要的。從三年級就開始學(xué)習(xí)的奧數(shù)積累到六年級,孩子做過無數(shù)的題目,見過無數(shù)的題型,但能反映在那張試卷上的,無非也就那么幾個知識點(diǎn)。而在這些知識點(diǎn)中,重要的無非也就是這么幾個——“數(shù)、行、形、算”。
何謂“數(shù)、行、形、算”,也就是數(shù)論,行程,圖形、計算四個問題。數(shù)論難在它的抽象,這是區(qū)分尖子生和普通生的關(guān)鍵;行程問題復(fù)雜就在其應(yīng)用,孩子在做這類題目的時候,要求的不僅是其思維,還有其表述;圖形問題(幾何問題)雜而難,重點(diǎn)要求的是面積的計算,這是中學(xué)教育的開始;計算是基礎(chǔ),是孩子取得高分的必要保障。
由于這四個問題,學(xué)生容易入門,但不易熟練,時常犯錯誤,因此成為近年來重點(diǎn)中學(xué)考試的熱點(diǎn),據(jù)統(tǒng)計清華附中近年來的這幾大問題的考題占據(jù)全部了80%左右,北師大附屬實驗中學(xué),仁華學(xué)校六年級等對這些問題的考察也十分偏重,而數(shù)論和行程問題的考察更是重中之重,往往占到一張試卷的50%.如何復(fù)習(xí)這四方面的內(nèi)容呢
對于圖形問題,我們要說的就是培養(yǎng)孩子的形象思維,重點(diǎn)加強(qiáng)的是面積的計算。計算的技巧和方法也是在做題的總結(jié)和加強(qiáng)的,這里重點(diǎn)介紹一下數(shù)論和行程問題的復(fù)習(xí)方法。
數(shù)論在數(shù)論學(xué)習(xí)中學(xué)生往往容易犯如下幾個錯誤:
1、讀題障礙。數(shù)論的題目敘述往往只有幾句話,甚至只有一行,可就這短短的幾句話,卻表達(dá)了很多意思,學(xué)生如果讀不出題中的意思,題目通常會解錯。
2、知識僵化。由于數(shù)論問題非常抽象,大多數(shù)學(xué)生往往采用死記硬背的方法來“消化”所學(xué)的內(nèi)容,導(dǎo)致各個知識點(diǎn)都似曾相識,但遇到實際題目卻一籌莫展。例如,說起奇偶性都知道怎么回事,馬上就開始背:“奇數(shù)+奇數(shù)=偶數(shù)……”可是在做題的時候就想不到用。
3、只見樹木,不見森林。對于數(shù)論定理的靈活運(yùn)用很欠缺。提起定理都能一字不差的背下來,但是對各個概念和性質(zhì)缺乏整體上的認(rèn)識和把握,更不用說理解各知識點(diǎn)之間的內(nèi)部聯(lián)系了。
知識體系:
整除問題:
。1)數(shù)的整除的特征和性質(zhì)
(2)位值原理的應(yīng)用
質(zhì)數(shù)合數(shù):
。1)質(zhì)數(shù)、合數(shù)的概念和判斷
。2)分解質(zhì)因數(shù)
約數(shù)倍數(shù):
。1)最大公約最小公倍數(shù)
。2)約數(shù)個數(shù)決定法則
余數(shù)問題:
。1)帶余除式的理解和運(yùn)用;
。2)同余的性質(zhì)和運(yùn)用;
。3)中國剩余定理
奇偶問題:
。1)奇偶與四則運(yùn)算;
。2)奇偶性質(zhì)在實際解題過程中的應(yīng)用
完全平方數(shù):
。1)完全平方數(shù)的判斷和性質(zhì)
。2)完全平方數(shù)的運(yùn)用整數(shù)及分?jǐn)?shù)的分解與分拆
這四個問題我們需要掌握到什么樣的程度
近幾年來,我們通過對清華附,人大附,北大附,西城實驗等名校的試卷分析發(fā)現(xiàn),雖然他們對以上的幾個問題考察較多,但是難度通常不大,中等難度題目出現(xiàn)的頻率很高,通常在60%以上,因此我們的同學(xué)只要夯實基礎(chǔ),對于這樣的一張試卷的完成應(yīng)該是能取得很好的成績的。對此,學(xué)校給出建議:如果我們的孩子不是要搞競賽,只是為了進(jìn)入重點(diǎn)中學(xué),中等題的掌握絕對是我們的重點(diǎn),不能盲目追求難度,否則容易適得其反。
小升初奧數(shù)知識點(diǎn)總結(jié)
年齡問題的三大特征
年齡問題:已知兩人的年齡,求若干年前或若干年后兩人年齡之間倍數(shù)關(guān)系的應(yīng)用題,叫做年齡問題。
年齡問題的三個基本特征:
、賰蓚人的年齡差是不變的;
、趦蓚人的年齡是同時增加或者同時減少的;
、蹆蓚人的年齡的倍數(shù)是發(fā)生變化的;
解題規(guī)律:抓住年齡差是個不變的數(shù)(常數(shù)),而倍數(shù)卻是每年都在變化的這個關(guān)鍵。
例:父親今年54歲,兒子今年18歲,幾年前父親的年齡是兒子年齡的7倍?父子年齡的差是多少?
54–18=36(歲)
幾年前父親年齡比兒子年齡大幾倍?
7-1=6
幾年前兒子多少歲?
36÷6=6(歲)
幾年前父親年齡是兒子年齡的7倍?
18–6=12(年)
答:12年前父親的年齡是兒子年齡的7倍。
小升初奧數(shù)知識點(diǎn)(歸一問題特點(diǎn))
歸一問題的基本特點(diǎn):
問題中有一個不變的量,一般是那個―單一量‖,題目一般用―照這樣的速度‖……等詞語來表示。
關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一量;
復(fù)合應(yīng)用題中的某些問題,解題時需先根據(jù)已知條件,求出一個單位量的數(shù)值,如單位面積的產(chǎn)量、單位時間的工作量、單位物品的價格、單位時間所行的距離等等,然后,再根據(jù)題中的條件和問題求出結(jié)果。這樣的應(yīng)用題就叫做歸一問題,這種解題方法叫做―歸一法‖。有些歸一問題可以采取同類數(shù)量之間進(jìn)行倍數(shù)比較的方法進(jìn)行解答,這種方法叫做倍比法。
由上所述,解答歸一問題的關(guān)鍵是求出單位量的數(shù)值,再根據(jù)題中―照這樣計算‖、―用同樣的速度‖等句子的含義,抓準(zhǔn)題中數(shù)量的對應(yīng)關(guān)系,列出算式,求得問題的解決。
植樹問題
基本類型:
在直線或者不封閉的曲線上植樹,兩端都植樹
在直線或者不封閉的曲線上植樹,兩端都不植樹
在直線或者不封閉的曲線上植樹,只有一端植樹
封閉曲線上植樹
基本公式:
棵數(shù)=段數(shù)+1
棵距×段數(shù)=總長
棵數(shù)=段數(shù)-1
棵距×段數(shù)=總長
棵數(shù)=段數(shù)
棵距×段數(shù)=總長
關(guān)鍵問題:
確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系
雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯的那部分置換出來;
基本思路:
、偌僭O(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
、诩僭O(shè)后,發(fā)生了和題目條件不同的差,找出這個差是多少;
、勖總事物造成的差是固定的,從而找出出現(xiàn)這個差的原因;
、茉俑鶕(jù)這兩個差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式:
、侔阉须u假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))②把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))關(guān)鍵問題:找出總量的差與單位量的差。
盈虧問題
基本概念:一定量的對象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于
分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對象分組的組數(shù)或?qū)ο蟮目偭浚舅悸罚合葘煞N分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對象的總量.
基本題型:
、僖淮斡杏鄶(shù),另一次不足;
基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差
、诋(dāng)兩次都有余數(shù);
基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差
、郛(dāng)兩次都不足;
基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差
基本特點(diǎn):對象總量和總的組數(shù)是不變的。
關(guān)鍵問題:確定對象總量和總的組數(shù)。
牛吃草問題
基本思路:假設(shè)每頭牛吃草的速度為―1‖份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。
基本特點(diǎn):原草量和新草生長速度是不變的;
關(guān)鍵問題:確定兩個不變的量。
基本公式:
生長量=(較長時間×長時間牛頭數(shù)-較短時間×短時間牛頭數(shù))÷(長時間-短時間);總草量=較長時間×長時間牛頭數(shù)-較長時間×生長量
小升初奧數(shù)知識點(diǎn)(平均數(shù)問題)
平均數(shù)
基本公式:
、倨骄鶖(shù)=總數(shù)量÷總份數(shù)
總數(shù)量=平均數(shù)×總份數(shù)
總份數(shù)=總數(shù)量÷平均數(shù)
、谄骄鶖(shù)=基準(zhǔn)數(shù)+每一個數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法:
、偾蟪隹倲(shù)量以及總份數(shù),利用基本公式①進(jìn)行計算.
、诨鶞(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式②
周期循環(huán)數(shù)
周期循環(huán)與數(shù)表規(guī)律
周期現(xiàn)象:事物在運(yùn)動變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時間叫周期。
關(guān)鍵問題:確定循環(huán)周期。
閏年:一年有366天;
、倌攴菽鼙4整除;②如果年份能被100整除,則年份必須能被400整除;平年:一年有365天。
、倌攴莶荒鼙4整除;②如果年份能被100整除,但不能被400整除;
抽屜原理
抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:
、4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1
觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點(diǎn):總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:
、賙=[n/m]+1個物體:當(dāng)n不能被m整除時。
、趉=n/m個物體:當(dāng)n能被m整除時。
理解知識點(diǎn):[X]表示不超過X的最大整數(shù)。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
定義新運(yùn)算
基本概念:定義一種新的運(yùn)算符號,這個新的運(yùn)算符號包含有多種基本(混合)運(yùn)算。
基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。
關(guān)鍵問題:正確理解定義的運(yùn)算符號的意義。
注意事項:
、傩碌倪\(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。
、诿總新定義的運(yùn)算符號只能在本題中使用。
數(shù)列求和
等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;
項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;
通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路:等差數(shù)列中涉及五個量:a1,an,d,n,sn,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。
基本公式:通項公式:an=a1+(n-1)d;
通項=首項+(項數(shù)一1)×公差;
數(shù)列和公式:sn,=(a1+an)×n÷2;
數(shù)列和=(首項+末項)×項數(shù)÷2;
項數(shù)公式:n=(an+a1)÷d+1;
項數(shù)=(末項-首項)÷公差+1;
公差公式:d=(an-a1))÷(n-1);
公差=(末項-首項)÷(項數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式;
二進(jìn)制及其應(yīng)用
十進(jìn)制:用0~9十個數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100
注意:n0=1;n1=n(其中n是任意自然數(shù))
二進(jìn)制:用0~1兩個數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。
。2)=An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+……+A3×22+A2×21+A1×20
注意:An不是0就是1。
十進(jìn)制化成二進(jìn)制:
、俑鶕(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。
、谙日页霾淮笥谠摂(shù)的2的n次方,再求它們的差,再找不大于這個差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點(diǎn)即可寫出。
加法原理
加法乘法原理和幾何計數(shù)
加法原理:如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+m2.......+mn種不同的方法。
關(guān)鍵問題:確定工作的分類方法。
基本特征:每一種方法都可完成任務(wù)。
乘法原理:如果完成一件任務(wù)需要分成n個步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。
關(guān)鍵問題:確定工作的完成步驟。
基本特征:每一步只能完成任務(wù)的一部分。
直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動,形成的軌跡。
直線特點(diǎn):沒有端點(diǎn),沒有長度。
線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線段特點(diǎn):有兩個端點(diǎn),有長度。
射線:把直線的一端無限延長。
射線特點(diǎn):只有一個端點(diǎn);沒有長度。
、贁(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);
、跀(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);
、蹟(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)×寬的線段數(shù):
、軘(shù)長方形規(guī)律:個數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)
質(zhì)數(shù)與合數(shù)
質(zhì)數(shù):一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做素數(shù)。合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。
質(zhì)因數(shù):如果某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù):把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。
分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:n=,其中a1、a2、a3……an都是合數(shù)n的質(zhì)因數(shù),且a1 求約數(shù)個數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1) 互質(zhì)數(shù):如果兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質(zhì)數(shù)。 約數(shù)與倍數(shù) 約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。 公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。 最大公約數(shù)的性質(zhì): 1、幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)。 2、幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。 3、幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。 4、幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。 例如:12的約數(shù)有1、2、3、4、6、12; 18的約數(shù)有:1、2、3、6、9、18; 那么12和18的公約數(shù)有:1、2、3、6; 那么12和18最大的公約數(shù)是:6,記作(12,18)=6; 求最大公約數(shù)基本方法: 1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。 2、短除法:先找公有的約數(shù),然后相乘。 3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)。 公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。 12的倍數(shù)有:12、24、36、48……; 18的倍數(shù)有:18、36、54、72……; 那么12和18的公倍數(shù)有:36、72、108……; 那么12和18最小的公倍數(shù)是36,記作[12,18]=36; 最小公倍數(shù)的性質(zhì): 1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。 2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。 求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法 數(shù)的整除 一、基本概念和符號: 1、整除:如果一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。 2、常用符號:整除符號―|‖,不能整除符號―‖;因為符號―∵‖,所以的符號―∴‖; 二、整除判斷方法: 1.能被2、5整除:末位上的數(shù)字能被2、5整除。 2.能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。 小升初奧數(shù)知識點(diǎn)總結(jié),匯總小學(xué)階段奧數(shù)知識點(diǎn),包括小升初中?嫉念}目類型等。有工程問題、行程問題、質(zhì)數(shù)合數(shù)問題等等 3.能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。 4.能被3、9整除:各個數(shù)位上數(shù)字的和能被3、9整除。 5.能被7整除: 、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。②逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。 6.能被11整除: 、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。②奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。 、壑鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字后能被11整除。 7.能被13整除: 、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。②逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。 三、整除的性質(zhì): 1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。 2.如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。 3.如果a能被b整除,b又能被c整除,那么a也能被c整除。 4.如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。 余數(shù)及其應(yīng)用 基本概念:對任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0 余數(shù)的性質(zhì): 、儆鄶(shù)小于除數(shù)。 、谌鬭、b除以c的余數(shù)相同,則c|a-b或c|b-a。 、踑與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。 、躠與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù) 余數(shù)問題 余數(shù)、同余與周期 一、同余的定義: 、偃魞蓚整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。 、谝阎齻整數(shù)a、b、m,如果m|a-b,就稱a、b對于模m同余,記作a≡b(modm),讀作a同余于b模m。 二、同余的性質(zhì): 、僮陨硇裕篴≡a(modm); 、趯ΨQ性:若a≡b(modm),則b≡a(modm); 、蹅鬟f性:若a≡b(modm),b≡c(modm),則a≡c(modm); 、芎筒钚裕喝鬭≡b(modm),c≡d(modm),則a+c≡b+d(modm),a-c≡b-d(modm);⑤相乘性:若a≡b(modm),c≡d(modm),則a×c≡b×d(modm); 、蕹朔叫裕喝鬭≡b(modm),則an≡bn(modm); 、咄缎:若a≡b(modm),整數(shù)c,則a×c≡b×c(modm×c); 三、關(guān)于乘方的預(yù)備知識: 、偃鬉=a×b,則MA=Ma×b=(Ma)b 、谌鬊=c+d則MB=Mc+d=Mc×Md 四、被3、9、11除后的余數(shù)特征: 、僖粋自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則M≡n(mod9)或(mod3); 、谝粋自然數(shù)M,X表示M的各個奇數(shù)位上數(shù)字的和,Y表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod11); 五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(modp)。 分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用 基本概念與性質(zhì): 分?jǐn)?shù):把單位―1‖平均分成幾份,表示這樣的一份或幾份的數(shù)。 分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。 分?jǐn)?shù)單位:把單位―1‖平均分成幾份,表示這樣一份的數(shù)。 百分?jǐn)?shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。 常用方法: 、倌嫦蛩季S方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。 、趯(yīng)思維方法:找出題目中具體的量與它所占的率的直接對應(yīng)關(guān)系。 、坜D(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。 、芗僭O(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。 、萘坎蛔兯季S方法:在變化的各個量當(dāng)中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況: a、分量發(fā)生變化,總量不變。 b、總量發(fā)生變化,但其中有的分量不變。 c、總量和分量都發(fā)生變化,但分量之間的差量不變化。 、尢鎿Q思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。 、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規(guī)律進(jìn)行處理。 、酀舛扰浔确ǎ阂话銘(yīng)用于總量和分量都發(fā)生變化的狀況 分?jǐn)?shù)大小的比較 基本方法: 、偻ǚ址肿臃ǎ菏顾蟹?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。②通分分母法:使所有分?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。 、刍鶞(zhǔn)數(shù)法:確定一個標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。 、芊肿雍头帜复笮”容^法:當(dāng)分子和分母的差一定時,分子或分母越大的分?jǐn)?shù)值越大。 、荼堵时容^法:當(dāng)比較兩個分子或分母同時變化時分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見同倍率變化規(guī)律) 、揶D(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。 、弑稊(shù)比較法:用一個數(shù)除以另一個數(shù),結(jié)果得數(shù)和1進(jìn)行比較。 、啻笮”容^法:用一個分?jǐn)?shù)減去另一個分?jǐn)?shù),得出的數(shù)和0比較。 、岬箶(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。 、饣鶞(zhǔn)數(shù)比較法:確定一個基準(zhǔn)數(shù),每一個數(shù)與基準(zhǔn)數(shù)比較。 完全平方數(shù) 完全平方數(shù)特征: 1.末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。 2.除以3余0或余1;反之不成立。 3.除以4余0或余1;反之不成立。 4.約數(shù)個數(shù)為奇數(shù);反之成立。 5.奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。 6.奇數(shù)平方個位數(shù)字是奇數(shù);偶數(shù)平方個位數(shù)字是偶數(shù)。 7.兩個相臨整數(shù)的平方之間不可能再有平方數(shù)。 平方差公式:X2-Y2=(X-Y)(X+Y) 完全平方和公式:(X+Y)2=X2+2XY+Y2 完全平方差公式:(X-Y)2=X2-2XY+Y2 比和比例問題 比:兩個數(shù)相除又叫兩個數(shù)的比。比號前面的數(shù)叫比的前項,比號后面的數(shù)叫比的后項。 比值:比的前項除以后項的商,叫做比值。 比的性質(zhì):比的前項和后項同時乘以或除以相同的數(shù)(零除外),比值不變。比例:表示兩個比相等的式子叫做比例。a:b=c:d或 比例的性質(zhì):兩個外項積等于兩個內(nèi)項積(交叉相乘),ad=bc。 正比例:若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時),則A與B成正比。 反比例:若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時),則A與B成反比。 比例尺:圖上距離與實際距離的比叫做比例尺。 按比例分配:把幾個數(shù)按一定比例分成幾份,叫按比例分配。 綜合行程問題 基本概念:行程問題是研究物體運(yùn)動的,它研究的是物體速度、時間、路程三者之間的關(guān)系. 基本公式:路程=速度×?xí)r間;路程÷時間=速度;路程÷速度=時間 關(guān)鍵問題:確定運(yùn)動過程中的位置和方向。 相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式) 追及問題:追及時間=路程差÷速度差(寫出其他公式) 流水問題:順?biāo)谐?(船速+水速)×順?biāo)畷r間 逆水行程=(船速-水速)×逆水時間 順?biāo)俣?船速+水速 逆水速度=船速-水速 靜水速度=(順?biāo)俣?逆水速度)÷2 水速=(順?biāo)俣?逆水速度)÷2 流水問題:關(guān)鍵是確定物體所運(yùn)動的速度,參照以上公式。 過橋問題:關(guān)鍵是確定物體所運(yùn)動的路程,參照以上公式。 主要方法:畫線段圖法 基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。 工程問題 基本公式: 、俟ぷ骺偭=工作效率×工作時間 、诠ぷ餍=工作總量÷工作時間 、酃ぷ鲿r間=工作總量÷工作效率 基本思路: 、偌僭O(shè)工作總量為―1‖(和總工作量無關(guān)); 、诩僭O(shè)一個方便的數(shù)為工作總量(一般是它們完成工作總量所用時間的最小公倍數(shù)),利用上述三個基本關(guān)系,可以簡單地表示出工作效率及工作時間. 關(guān)鍵問題:確定工作量、工作時間、工作效率間的兩兩對應(yīng)關(guān)系。 經(jīng)驗簡評:合久必分,分久必合。 小升初奧數(shù)知識點(diǎn)(邏輯推理問題) 邏輯推理 基本方法簡介: 、贄l件分析—假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。 、跅l件分析—列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時,就需要進(jìn)行列表來輔助分析。列表法就是把題設(shè)的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。 、蹢l件分析——圖表法:當(dāng)兩個對象之間只有兩種關(guān)系時,就可用連線表示兩個對象之間的關(guān)系,有連線則表示―是,有‖等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識或不認(rèn)識兩種狀態(tài),有連線表示認(rèn)識,沒有表示不認(rèn)識。④邏輯計算:在推理的過程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計算,根據(jù)計算的結(jié)果為推理提供一個新的判斷篩選條件。 、莺唵螝w納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問題的解決 幾何面積 基本思路: 在一些面積的計算上,不能直接運(yùn)用公式的情況下,一般需要對圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。 常用方法: 1.連輔助線方法 2.利用等底等高的兩個三角形面積相等。 3.大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說的是任意點(diǎn),解題時可把任意點(diǎn)設(shè)置在特殊位置上)。 4.利用特殊規(guī)律 、俚妊苯侨切,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積) 、谔菪螌蔷連線后,兩腰部分面積相等。 、蹐A的面積占外接正方形面積的78.5% 【如何攻克小升初奧數(shù)必考的四大知識點(diǎn)】相關(guān)文章: 小升初奧數(shù):比例問題的知識點(diǎn)11-12 重慶小升初奧數(shù)重要知識點(diǎn)的整理04-18 小升初數(shù)學(xué)必考知識點(diǎn)10-18 44個小學(xué)奧數(shù)必考公式 02-10 小升初數(shù)學(xué)必考知識點(diǎn)參考02-07 小升初語文必考知識點(diǎn)梳理02-13 小升初人教版語文必考知識點(diǎn)06-07 小升初奧數(shù)行程問題之自動扶梯知識點(diǎn)05-25