初三數(shù)學(xué)知識(shí)點(diǎn)歸納
在學(xué)習(xí)中,是不是經(jīng)常追著老師要知識(shí)點(diǎn)?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。還在為沒有系統(tǒng)的知識(shí)點(diǎn)而發(fā)愁嗎?以下是小編整理的初三數(shù)學(xué)知識(shí)點(diǎn)歸納,供大家參考借鑒,希望可以幫助到有需要的朋友。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 1
鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。
對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長線,像這樣的兩個(gè)角互為對(duì)頂角。
垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。
內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。
同旁內(nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁內(nèi)角。
命題:判斷一件事情的語句叫命題。
平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡稱平移。
對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 2
三角形全等的條件
1.兩個(gè)三角形對(duì)應(yīng)的兩邊及其夾角相等,兩個(gè)三角形全等,簡稱“邊角邊”或“SAS”。
2.兩個(gè)三角形對(duì)應(yīng)的兩角及其夾邊相等,兩個(gè)三角形全等,簡稱“角邊角”或“ASA”。
3.兩個(gè)三角形對(duì)應(yīng)的兩角及其一角的對(duì)邊相等,兩個(gè)三角形全等,簡稱“角角邊”或“AAS”。
4.兩個(gè)三角形對(duì)應(yīng)的三條邊相等,兩個(gè)三角形全等,簡稱“邊邊邊”或“SSS"。
5.兩個(gè)直角三角形對(duì)應(yīng)的一條斜邊和一條直角邊相等,兩個(gè)直角三角形全等,簡稱“直角邊、斜邊”或“HL”。
注意,證明三角形全等沒有“SSA”或“邊邊角”的方法,即兩邊與其中一邊的對(duì)角相等無法證明這兩個(gè)三角形全等,但從意義上來說,直角三角形的“HL”證明等同“SSA”。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 3
(1)垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的2條弧。
逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的2條弧。
(2)有關(guān)圓周角和圓心角的性質(zhì)和定理
①在同圓或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。
、谝粭l弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
圓心角計(jì)算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)
即圓心角的度數(shù)等于它所對(duì)的弧的度數(shù);圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半。
、廴绻粭l弧的長是另一條弧的2倍,那么其所對(duì)的圓周角和圓心角是另一條弧的2倍。
(3)有關(guān)外接圓和內(nèi)切圓的性質(zhì)和定理
①一個(gè)三角形有唯一確定的外接圓和內(nèi)性。惋傆陨n殘氖僑切胃鞅嘰怪逼椒窒叩慕壞悖餃切穩(wěn)齠サ憔嗬胂嗟;
、趦(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形三邊距離相等。
③R=2S△÷L(R:內(nèi)切圓半徑,S:三角形面積,L:三角形周長)
、軆上嗲袌A的連心線過切點(diǎn)(連心線:兩個(gè)圓心相連的直線)
⑤圓O中的弦PQ的中點(diǎn)M,過點(diǎn)M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點(diǎn)。
(4)如果兩圓相交,那么連接兩圓圓心的線段(直線也可)垂直平分公共弦。
(5)弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。
(6)圓內(nèi)角的度數(shù)等于這個(gè)角所對(duì)的弧的度數(shù)之和的一半。
(7)圓外角的度數(shù)等于這個(gè)角所截兩段弧的度數(shù)之差的一半。
(8)周長相等,圓面積比長方形、正方形、三角形的面積大。
圓的知識(shí)要領(lǐng)不僅?脊,又是也會(huì)直接出一些關(guān)于定理的試題。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 4
1.數(shù)的分類及概念數(shù)系表:
說明:分類的原則:
1)相稱(不重、不漏)
2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù):
、俣x及表示法
、谛再|(zhì):A.a1/a(a1);B.1/a中,aC.0
4.相反數(shù):
、俣x及表示法
、谛再|(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:
、俣x(三要素)
、谧饔茫篈.直觀地比較實(shí)數(shù)的大;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:
、俣x(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
、讴│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 5
我們學(xué)習(xí)的圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條通過圓心的直線,所以是無數(shù)條對(duì)稱軸。
圓及有關(guān)概念
1、到定點(diǎn)的距離等于定長的點(diǎn)的集合叫做圓(circle).這個(gè)定點(diǎn)叫做圓的圓心。
2、連接圓心和圓上的任意一點(diǎn)的線段叫做半徑(radius)。
3、通過圓心并且兩端都在圓上的線段叫做直徑(diameter)。
4、連接圓上任意兩點(diǎn)的線段叫做弦(chord).最長的弦是直徑。
5、圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧(arc).大于半圓的弧稱為優(yōu)弧,優(yōu)弧是用三個(gè)字母表示。小于半圓的弧稱為劣弧,劣弧用兩個(gè)字母表示。半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧是大于180度的弧,劣弧是小于180度的弧
6、由兩條半徑和一段弧圍成的圖形叫做扇形(sector)。
7、由弦和它所對(duì)的一段弧圍成的圖形叫做弓形。
8、頂點(diǎn)在圓心上的角叫做圓心角(centralangle)。
9、頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
10、圓周長度與圓的直徑長度的比值叫做圓周率。它是一個(gè)超越數(shù),通常用π表示,π=3.1415926535……。在實(shí)際應(yīng)用中,一般取π≈3.14。
11、圓周角等于弧所對(duì)的圓心角的一半。
字母表示
圓—⊙;半徑—r或R(在環(huán)形圓中外環(huán)半徑表示的字母);弧—⌒;直徑—d;
扇形弧長—L;周長—C;面積—S。
圓的表示方法要求很嚴(yán)格,需要用到相應(yīng)的知識(shí)要求。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 6
反比例函數(shù)y=k/x的圖象是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限或第二、四象限。
它們關(guān)于原點(diǎn)對(duì)稱、反比例函數(shù)的圖象與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)不與坐標(biāo)軸相交。
畫反比例函數(shù)的圖象時(shí)要注意的問題:
。1)畫反比例函數(shù)圖象的方法是描點(diǎn)法;
。2)畫反比例函數(shù)圖象要注意自變量的取值范圍是k≠0,因此不能把兩個(gè)分支連接起來。
k≠0
。3)由于在反比例函數(shù)中,x和y的值都不能為0,所以畫出的雙曲線的兩個(gè)分支要分別體現(xiàn)出無限的接近坐標(biāo)軸,但永遠(yuǎn)不能達(dá)到x軸和y軸的變化趨勢。
反比例函數(shù)的性質(zhì):
y=k/x(k≠0)的變形形式為xy=k(常數(shù))所以:
。1)其圖象的位置是:
當(dāng)k﹥0時(shí),x、y同號(hào),圖象在第一、三象限;
當(dāng)k﹤0時(shí),x、y異號(hào),圖象在第二、四象限。
(2)若點(diǎn)(m,n)在反比例函數(shù)y=k/x(k≠0)的圖象上,則點(diǎn)(—m,—n)也在此圖象上,故反比例函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。
。3)當(dāng)k﹥0時(shí),在每個(gè)象限內(nèi),y隨x的增大而減小;
當(dāng)k﹤0時(shí),在每個(gè)象限內(nèi),y隨x的增大而增大;
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 7
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a0時(shí),拋物線向上開口;當(dāng)a0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab0),對(duì)稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
=b^2-4ac0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
=b^2-4ac0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-bb^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 8
1.軸對(duì)稱:
把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn),對(duì)應(yīng)線段叫做對(duì)稱線段。
2.軸對(duì)稱圖形:
如果一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸。
注意:對(duì)稱軸是直線而不是線段
3.軸對(duì)稱的性質(zhì):
(1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形;
(2)如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線;
(3)兩個(gè)圖形關(guān)于某條直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上;
(4)如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
4.線段垂直平分線:
(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
(2)性質(zhì):①線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;
、诘揭粭l線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
5.角的平分線:
(1)定義:把一個(gè)角分成兩個(gè)相等的角的射線叫做角的平分線.
(2)性質(zhì):①在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.
②到一個(gè)角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上.
注意:根據(jù)角平分線的性質(zhì),三角形的三個(gè)內(nèi)角的平分線交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等.
6.等腰三角形的性質(zhì)與判定:
性質(zhì):
(1)對(duì)稱性:等腰三角形是軸對(duì)稱圖形,等腰三角形底邊上的中線所在的直線是它的對(duì)稱軸,或底邊上的.高所在的直線是它的對(duì)稱軸,或頂角的平分線所在的直線是它的對(duì)稱軸;
(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對(duì)等角:等腰三角形的兩個(gè)底角相等。
說明:等腰三角形的性質(zhì)除三線合一外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:①等腰三角形兩底角的平分線相等;②等腰三角形兩腰上的中線相等;
、鄣妊切蝺裳系母呦嗟;④等腰三角形底邊上的中點(diǎn)到兩腰的距離相等。
判定定理:如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡稱:等角對(duì)等邊)。
7.等邊三角形的性質(zhì)與判定:
性質(zhì):
(1)等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于60
(2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有三線合一。因此等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸,而等腰三角形(非等邊三角形)只有一條對(duì)稱軸。
判定定理:有一個(gè)角是60的等腰三角形是等邊三角形。
說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 9
一、求復(fù)雜事件的概率:
1.有些隨機(jī)事件不可能用樹狀圖和列表法求其發(fā)生的概率,只能用試驗(yàn)、統(tǒng)計(jì)的方法估計(jì)其發(fā)生的概率。
2.對(duì)于作何一個(gè)隨機(jī)事件都有一個(gè)固定的概率客觀存在。
3.對(duì)隨機(jī)事件做大量試驗(yàn)時(shí),根據(jù)重復(fù)試驗(yàn)的特征,我們確定概率時(shí)應(yīng)當(dāng)注意幾點(diǎn):
(1)盡量經(jīng)歷反復(fù)實(shí)驗(yàn)的過程,不能想當(dāng)然的作出判斷;
(2)做實(shí)驗(yàn)時(shí)應(yīng)當(dāng)在相同條件下進(jìn)行;
(3)實(shí)驗(yàn)的次數(shù)要足夠多,不能太少;
(4)把每一次實(shí)驗(yàn)的結(jié)果準(zhǔn)確,實(shí)時(shí)的做好記錄;
(5)分階段分別從第一次起計(jì)算,事件發(fā)生的頻率,并把這些頻率用折線統(tǒng)計(jì)圖直觀的表示出來;
(6)觀察分析統(tǒng)計(jì)圖,找出頻率變化的逐漸穩(wěn)定值,并用這個(gè)穩(wěn)定值估計(jì)事件發(fā)生的概率,這種估計(jì)概率的方法的優(yōu)點(diǎn)是直觀,缺點(diǎn)是估計(jì)值必須在實(shí)驗(yàn)后才能得到,無法事件預(yù)測。
二、判斷游戲公平:
游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。
三、概率綜合運(yùn)用:
概率可以和很多知識(shí)綜合命題,主要涉及平面圖形、統(tǒng)計(jì)圖、平均數(shù)、中位數(shù)、眾數(shù)、函數(shù)等。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 10
1、必然事件、不可能事件、隨機(jī)事件的區(qū)別
2、概率
一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p就叫做事件A的概率(probability),記作P(A)=p。
注意:
(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映。
(2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計(jì)得到事件發(fā)生的概率,但二者不能簡單地等同。
3、求概率的方法
(1)用列舉法求概率(列表法、畫樹形圖法)
(2)用頻率估計(jì)概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來估計(jì)事件發(fā)生的概率。另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)(事件發(fā)生的概率)附近,說明概率是個(gè)定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 11
1.代數(shù)式與有理式
用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3.單項(xiàng)式與多項(xiàng)式
沒有加減運(yùn)算的整式叫做單項(xiàng)式(數(shù)字與字母的積—包括單獨(dú)的一個(gè)數(shù)或字母)。
幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。②進(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。劃分代數(shù)式類別時(shí),是從外形來看。如=x,=│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:
、購奈恢蒙峡;
、趶谋硎镜囊饬x上看;
5.同類項(xiàng)及其合并
條件:
、僮帜赶嗤;
、谙嗤帜傅闹笖(shù)相同
合并依據(jù):乘法分配律
6.根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。
注意:
、購耐庑紊吓袛;
、趨^(qū)別:是根式,但不是無理式(是無理數(shù))。
7.算術(shù)平方根
、耪龜(shù)a的正的平方根([a≥0—與“平方根”的區(qū)別]);
、扑阈g(shù)平方根與絕對(duì)值
、俾(lián)系:都是非負(fù)數(shù),=│a│
、趨^(qū)別:│a│中,a為一切實(shí)數(shù);中,a為非負(fù)數(shù)。
8.同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:
、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式;
②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號(hào)劃去叫做分母有理化。
9.指數(shù)
、(—冪,乘方運(yùn)算)。
、賏>0時(shí),>0;
、赼<0時(shí),>0(n是偶數(shù)),<0(n是奇數(shù))。
、屏阒笖(shù):=1(a≠0)。
負(fù)整指數(shù):=1/(a≠0,p是正整數(shù))。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 12
一、本章的兩套定理
第一套(比例的有關(guān)性質(zhì)):
涉及概念:
、俚谒谋壤(xiàng)
②比例中項(xiàng)
、郾鹊那绊(xiàng)、后項(xiàng),比的內(nèi)項(xiàng)、外項(xiàng)
、茳S金分割等。
第二套:
注意:
、俣ɡ碇袑(duì)應(yīng)二字的含義;
、谄叫邢嗨(比例線段)平行。
二、相似三角形性質(zhì)
1.對(duì)應(yīng)線段
2.對(duì)應(yīng)周長
3.對(duì)應(yīng)面積。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納 13
知識(shí)點(diǎn)一、平面直角坐標(biāo)系
1,平面直角坐標(biāo)系
在平面內(nèi)畫兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn),不屬于任何象限。
2、點(diǎn)的坐標(biāo)的概念
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
知識(shí)點(diǎn)二、不同位置的點(diǎn)的坐標(biāo)的特征
1、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限
點(diǎn)P(x,y)在第二象限
點(diǎn)P(x,y)在第三象限
點(diǎn)P(x,y)在第四象限
2、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)
3、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線上x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
4、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征
位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
5、關(guān)于x軸、y軸或遠(yuǎn)點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)
點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)
點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱橫、縱坐標(biāo)均互為相反數(shù)
6、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
(1)點(diǎn)P(x,y)到x軸的距離等于
(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于
(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于
【初三數(shù)學(xué)知識(shí)點(diǎn)歸納】相關(guān)文章:
初三數(shù)學(xué)的知識(shí)點(diǎn)歸納02-22
初三數(shù)學(xué)重要的知識(shí)點(diǎn)歸納04-02
初三數(shù)學(xué)幾何知識(shí)點(diǎn)歸納07-07
初三數(shù)學(xué)旋轉(zhuǎn)知識(shí)點(diǎn)歸納07-21
初三數(shù)學(xué)的知識(shí)點(diǎn)歸納9篇02-23
初三數(shù)學(xué)知識(shí)點(diǎn)歸納整理11-03
初三數(shù)學(xué)的知識(shí)點(diǎn)歸納(9篇)02-24
最全初三數(shù)學(xué)知識(shí)點(diǎn)歸納02-15