欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

數(shù)學(xué) 百文網(wǎng)手機(jī)站

談?wù)劰た茖W(xué)生如何學(xué)習(xí)數(shù)學(xué)呢

時(shí)間:2021-07-02 13:16:42 數(shù)學(xué) 我要投稿

談?wù)劰た茖W(xué)生如何學(xué)習(xí)數(shù)學(xué)呢

  不少工科學(xué)生特別是工科研究生對(duì)數(shù)學(xué)基礎(chǔ)不足感到壓力。確實(shí),缺乏數(shù)學(xué)的幫助會(huì)使得學(xué)生們的研究缺乏思路和工具,缺乏捕捉問題的敏感性,缺乏抽取問題本質(zhì)的能力,缺乏處理問題的技巧和方法。我們?cè)S多碩士生、博士生的研究論文缺乏創(chuàng)新性,數(shù)學(xué)基礎(chǔ)差是一個(gè)重要原因。這個(gè)講座談?wù)劰た茖W(xué)生如何學(xué)習(xí)數(shù)學(xué)的問題,希望對(duì)有愿望提高數(shù)學(xué)能力的同學(xué)有所幫助。我本人是電子信息領(lǐng)域中的一個(gè)研究者,不是數(shù)學(xué)家,這里講的希望能貼近工科學(xué)生的需要。作數(shù)學(xué)工作的同仁可以從這里了解到工科研究者對(duì)數(shù)學(xué)的一部分理解以及對(duì)數(shù)學(xué)家們的期望。

談?wù)劰た茖W(xué)生如何學(xué)習(xí)數(shù)學(xué)呢

  (一)讓興趣引導(dǎo)我們接近數(shù)學(xué)

  有愿望學(xué)習(xí)數(shù)學(xué),而數(shù)學(xué)內(nèi)容常常不那么有趣。確實(shí)沒有多少人能堅(jiān)持做那些令人發(fā)困的勞作。然而,有人談到過這樣的經(jīng)驗(yàn):對(duì)數(shù)學(xué)的興趣需要發(fā)掘、引導(dǎo)和培養(yǎng)。我對(duì)此很為認(rèn)同。有多種方法可能增加你對(duì)數(shù)學(xué)的興趣,當(dāng)然沒有一種辦法可以減輕你需要付出的努力。多做數(shù)學(xué)題是提高數(shù)學(xué)能力和興趣的有效方法。不少成功的研究者都介紹過這個(gè)經(jīng)驗(yàn)。如果你正在學(xué)習(xí)數(shù)學(xué),如果你發(fā)現(xiàn)一道道看似困難的問題能逐漸被你解答,就表明你已經(jīng)進(jìn)入了良好狀態(tài)。這是一個(gè)好的開端,會(huì)有克服者的喜悅,會(huì)不斷發(fā)現(xiàn)你自己的數(shù)學(xué)才能,有繼續(xù)進(jìn)展的興趣和勁頭。如果你已經(jīng)進(jìn)入了研究工作,如果你不時(shí)抽出一點(diǎn)時(shí)間做一點(diǎn)數(shù)學(xué)趣題,對(duì)保持和提高你的數(shù)學(xué)思維活力一定有所幫助。

  不少學(xué)生提出過這樣的問題:是不是必須先準(zhǔn)備了深入寬廣的數(shù)學(xué)基礎(chǔ)才適合于進(jìn)入研究工作?確實(shí),我不知道有哪個(gè)非數(shù)學(xué)專業(yè)的研究者是那樣做的。而且認(rèn)為那不是一個(gè)切合實(shí)際的方法。不過,準(zhǔn)備在工科專業(yè)領(lǐng)域內(nèi)做深入研究的學(xué)生們應(yīng)當(dāng)花一點(diǎn)時(shí)間讀一點(diǎn)最基礎(chǔ)的數(shù)學(xué)。除了工科大學(xué)已經(jīng)教過的高等數(shù)學(xué)等課程外,可以讀一點(diǎn)實(shí)分析和近世代數(shù)的入門知識(shí)。了解一點(diǎn)關(guān)于集合、測(cè)度、連續(xù)統(tǒng)、Lebesgue積分,以及初等數(shù)論、群這些基本概念。學(xué)習(xí)這些基本知識(shí)不需要太多的時(shí)間,而對(duì)進(jìn)一步學(xué)習(xí)數(shù)學(xué)理論很有必要。對(duì)于更深入廣泛的數(shù)學(xué)知識(shí),不妨先采用“瀏覽學(xué)習(xí)法”:試著讀一讀,不太懂不要緊,但要求快一些,多一些!盀g覽學(xué)習(xí)法”的目的是了解數(shù)學(xué)涉及的各個(gè)方面,為將來深入學(xué)習(xí)提供線索。不要小看那些似懂非懂的線索。如果你積累了較豐富的線索,它們會(huì)擴(kuò)展你的思路,在需要的時(shí)候引導(dǎo)你較快地了解必須深入準(zhǔn)備的基礎(chǔ)。缺乏線索,腦子里要么一片空白,要么產(chǎn)生一些不切實(shí)際的空想,自然難以作研究工作。

  結(jié)合專業(yè)研究的需要來學(xué)習(xí)深入的數(shù)學(xué)理論是一個(gè)許多研究者都很認(rèn)可的方法。事實(shí)上,對(duì)專業(yè)研究題目深入思考可能激發(fā)起對(duì)數(shù)學(xué)的高度興趣甚至產(chǎn)生出創(chuàng)新性成果。愛因斯坦的研究經(jīng)歷是人們知道的。在愛因斯坦研究廣義相對(duì)論的早期,并非數(shù)學(xué)基礎(chǔ)十分豐厚。在他的同學(xué)格羅斯曼的幫助下,了解了黎曼幾何和張量分析。愛因斯坦在深入研究中感覺到,這種數(shù)學(xué)工具簡(jiǎn)直是為他發(fā)展廣義相對(duì)論而準(zhǔn)備的。他的工作不僅使廣義相對(duì)論發(fā)展到成熟,而且推動(dòng)了黎曼幾何更加突飛猛進(jìn)地進(jìn)步。

  絕非只是在物理等基礎(chǔ)研究領(lǐng)域能夠提出挑戰(zhàn)性問題和發(fā)現(xiàn)數(shù)學(xué)的應(yīng)用。在應(yīng)用科學(xué)包括工程學(xué)科領(lǐng)域內(nèi),處處都有挑戰(zhàn)性問題。當(dāng)你試圖解決某個(gè)實(shí)際問題的時(shí)候,你總會(huì)感到手頭的數(shù)學(xué)不夠用。盡管現(xiàn)代數(shù)學(xué)已經(jīng)取得了十分豐富的成果,而物理世界太復(fù)雜太豐富了,當(dāng)今數(shù)學(xué)能夠描述和處理的問題還僅僅是一個(gè)很小的集合,而工科研究者手頭的數(shù)學(xué)恐怕會(huì)更少。

  從自己從事的工程學(xué)科研究中抽取數(shù)學(xué)問題是我對(duì)工科學(xué)生的一個(gè)建議。不必苦苦尋求那些

  被媒體追捧的“明珠”,除非你確實(shí)有準(zhǔn)備和興趣。你在工程學(xué)科中的已有基礎(chǔ)是值得珍視的。這些基礎(chǔ)有可能幫助你抽取出很有意義的理論和數(shù)學(xué)問題。而發(fā)現(xiàn)這些問題,除了靈感以外,最靠得住的恐怕是對(duì)專業(yè)工作的專注、勤奮而開放的思考和數(shù)學(xué)基礎(chǔ)。

  工科學(xué)生可以發(fā)揮自己在形象思維方面的長(zhǎng)處去理解數(shù)學(xué)。如果這樣,你或許會(huì)發(fā)現(xiàn)數(shù)學(xué)中的若干知識(shí)不僅有趣,而且有用。這里說一說幾個(gè)常見的例子。

  ――正交性。這是布滿了數(shù)學(xué)和物理書籍的基本知識(shí)。為什么正交函數(shù)會(huì)如此廣泛地受到重視?從數(shù)學(xué)的角度看到的是基,用它來描述函數(shù)空間中任何一個(gè)元具有唯一性和可逆性;可以聯(lián)系映射的定義域和值域,從而研究解乃至求得解。從應(yīng)用的角度看到的是一種基本工具或方法,可以使得例如函數(shù)變換、函數(shù)逼近、數(shù)據(jù)壓縮、數(shù)學(xué)物理問題的求解等問題變得容易處理和易于理解。與正交性相聯(lián)系的自然是非正交性。非正交性也很有用。例如用非正交基(標(biāo)架)表示信號(hào)可以靈活地具有某些特別的性質(zhì)。這種表示帶有一定冗余,但有一定抗損能力。

  描述空間正交性最基本的數(shù)學(xué)原理是什么?合理的回答應(yīng)該是Cauchy-Riemann方程。由此才有保角變換、Laplace方程、調(diào)和函數(shù)、Poisson方程等等。空間正交性對(duì)數(shù)學(xué)物理問題的研究者太有用了。有了這個(gè)直觀概念,就容易理解和猜測(cè)例如流體力學(xué)、引力場(chǎng)、電磁場(chǎng)等等領(lǐng)域中邊值問題的解的形式。例如波導(dǎo)中特別是在不規(guī)則波導(dǎo)中電磁波存在的模式、模式變化這些問題可以根據(jù)正交性來猜測(cè)和解釋,因?yàn)殡妶?chǎng)分量必定垂直于波導(dǎo)壁,而磁場(chǎng)分量必須平行于波導(dǎo)壁。

  ――無源性。討論無源性的數(shù)學(xué)家不多,但對(duì)于物理和工程,無源性非常重要?臻g無源性隱含在解析函數(shù)的Cauchy積分定理中。事實(shí)上,例如用有限元方法處理大型力學(xué)計(jì)算問題時(shí)人們觀察到,求解方程的矩陣一般是主對(duì)角優(yōu)勢(shì)的,這和求解一個(gè)無源電阻網(wǎng)絡(luò)時(shí)觀察到的現(xiàn)象相一致。其內(nèi)因就是無源性,它保證了解的數(shù)值穩(wěn)定性和迭代求解方法的快速收斂。在電路理論中證實(shí),一類特別的解析函數(shù)稱為正實(shí)函數(shù)作為驅(qū)動(dòng)阻抗,是無源網(wǎng)絡(luò)可綜合的充分必要條件。進(jìn)而,無源而且無損的網(wǎng)絡(luò)在電子工程設(shè)計(jì)上非常有用。因?yàn)槔鐭o源無損濾波器的特性隨元件參數(shù)變化的敏感度底,適合于工業(yè)生產(chǎn),F(xiàn)代數(shù)字濾波器包括通信濾波器組的理論和設(shè)計(jì)都要應(yīng)用和發(fā)展這些概念。

  ――最大熵和最小熵。熵是熱物理學(xué)中最先引入的概念,用它表示能量在系統(tǒng)中分布的均勻程度,同時(shí)也表示熱和溫度的關(guān)系。一個(gè)系統(tǒng)達(dá)到了熱平衡,或達(dá)到了能量的均勻分布,則系統(tǒng)的熵達(dá)到最大。在通信領(lǐng)域中熵被用來作為信息的度量,表示平均信息量。如果熵最大,表明信源的不確定性最大,被傳送的信號(hào)寄載的信息自然就最多。在信息處理、信號(hào)估計(jì),包括圖像處理應(yīng)用中,熵的概念被借用來表示對(duì)解的先驗(yàn)限制:最大熵限制表示解在數(shù)值分布上應(yīng)該有一定的均勻性或平滑性;而最小熵限制表示解應(yīng)該很不平滑,如同若干孤立點(diǎn)那樣。這兩種情況在應(yīng)用中都可能出現(xiàn)。例如在若干反演問題中(如信號(hào)重建、復(fù)原、去噪、估計(jì)等),為了抑制噪聲,可以將最大熵作為對(duì)解的附加限制。在另外的情況下,例如希望的解是點(diǎn)狀的星云,或者是如同若干孤立噪聲那樣的巖層反射序列,或者是只含一個(gè)非零元的理想信道,對(duì)這些情況就可以附加最小熵限制。注意我們這里使用的“概念被借用”說法。其實(shí)這是研究中的常用方法。如果你的視野廣些,積累多些,就有可借用的機(jī)會(huì)。――距離和相似性。距離這個(gè)概念在數(shù)學(xué)中太重要了,它是定義度量空間的第一要素。有了距離,才好討論度量空間中元和元之間的相互關(guān)系,才好討論按距離的收斂性。有多種距離的具體形式適合于研究不同的數(shù)學(xué)問題。典型的例子有用函數(shù)差值上界定義的距離(一致收斂距離)和按函數(shù)差值平方積分定義的距離(均方收斂距離)。典型地,許多問題需要通過最優(yōu)化一個(gè)泛函指標(biāo)來表達(dá),這個(gè)指標(biāo)就是距離。工科研究者十分關(guān)注距離的一個(gè)直觀含義:函數(shù)的相似性度量。自然地,用距離描述的相似性是很窄的一類相似性。即使是這樣,它的應(yīng)用已經(jīng)遍及物理和工程的許多領(lǐng)域。與電子信息領(lǐng)域相關(guān)的應(yīng)用例子有信號(hào)(圖像)重建、恢復(fù)、估計(jì)等等。兩個(gè)隨機(jī)變量的在統(tǒng)計(jì)上是否相關(guān)或獨(dú)立,或者它們的統(tǒng)計(jì)特性是否相似,為檢驗(yàn)這些問題在統(tǒng)計(jì)學(xué)中引入了Kullback-Leibler型距離和Bhattacharyya距離(或稱為差離度,divergence)。這些距離不滿足三角不等式,稱為廣義距離。它們?cè)诮y(tǒng)計(jì)模式分析、目標(biāo)識(shí)別和分類、圖像分割和配準(zhǔn)等方面已經(jīng)有重要應(yīng)用。在工程研究中你可以利用手頭掌握的數(shù)學(xué)不等式,定義新的距離或廣義距離,它或許有某種特別的性質(zhì)。

  人感知物理世界,哪些事和物按什么方式和度量彼此相似,這可能是最富魅力的科學(xué)問題之一。相似這個(gè)概念既直觀又抽象甚至神秘。例如繪畫家可以將一個(gè)人的形象用寫實(shí)畫、印象畫、線描畫、甚至各種形態(tài)的漫畫表現(xiàn)出來,我們可以認(rèn)識(shí)他,并認(rèn)為和照片上的他是同一個(gè)人。問題是如何從數(shù)學(xué)上定義這些圖畫中人的相似性?

  如果你細(xì)心思考,數(shù)學(xué)中處處都可以發(fā)現(xiàn)很有趣的問題,這些問題可以在物理和工程中找到應(yīng)用背景。

  物理和工程學(xué)科中包含大量的數(shù)學(xué)。有的工科學(xué)習(xí)者對(duì)數(shù)學(xué)表達(dá)不經(jīng)意,甚至厭煩,這種心態(tài)會(huì)妨礙知識(shí)的獲得。如果你愿意花一點(diǎn)時(shí)間去讀懂一些重要的.數(shù)學(xué)表達(dá),你會(huì)發(fā)現(xiàn)不僅在認(rèn)識(shí)的深度上會(huì)大大不同,而且會(huì)引出樂趣甚至創(chuàng)新性的認(rèn)識(shí)。這里不妨舉一個(gè)大家熟悉的例子。卷積的表達(dá)式為y(t)=∫abx(t-τ)h(τ)dτ。我們的教科書中總是這樣解說的:在每個(gè)時(shí)間點(diǎn)t,將x(τ)翻轉(zhuǎn)為x(-τ),再平移為x(t-τ),與h(τ)乘積的結(jié)果,求面積,就得到卷積的結(jié)果。這個(gè)解說是沒錯(cuò)的,并且因?yàn)閤(τ)要被翻轉(zhuǎn),成為“卷積”這個(gè)稱呼的來源。但問題是,這個(gè)解釋符合物理事實(shí)嗎?或者說在物理上的一個(gè)卷積過程,要求一個(gè)物理量在時(shí)間上(或空間上)必須被翻轉(zhuǎn)嗎?這顯然不是事實(shí)!現(xiàn)在的問題出在哪里?問題出在剛才的解說僅僅是一個(gè)數(shù)學(xué)解說。另一種解說就沒有這樣的困難:將x(t)平移一個(gè)時(shí)間量τ成為x(t-τ),乘在τ處的函數(shù)值h(τ),取遍定義h(τ)的所有τ,將乘積累積起來,就得到卷積的結(jié)果。后一種解釋其實(shí)是最老的解釋:疊加原理。正是按照這種解釋,可以構(gòu)造出用物理硬件實(shí)施卷積計(jì)算的卷積器。“翻轉(zhuǎn)”這個(gè)概念應(yīng)該說造成了某些負(fù)面后果。例如,考慮兩個(gè)外形不同的多邊形(你不妨在紙上畫一個(gè)任意的三角形和一個(gè)任意的四邊形,假定圖形內(nèi)數(shù)值是1,圖形外是0),這兩個(gè)圖形卷積后,結(jié)果是什么外形?你可以試圖通過上面的兩種解釋從概念上得到結(jié)果。你會(huì)發(fā)現(xiàn),從“翻轉(zhuǎn)”解釋出發(fā)會(huì)使你頭痛,而從后一種解釋得到結(jié)果就很直觀和容易。不要小看了這里的問題,它聯(lián)系著某些深入的數(shù)學(xué):代數(shù)幾何、多項(xiàng)式代數(shù)和分配函數(shù)理論。

  另一個(gè)簡(jiǎn)單例子是矩陣的奇異值分解(SVD)。這種方法常常用于圖像的特征描述、分類和識(shí)別。人們將圖像離散化為數(shù)值數(shù)組,將數(shù)組作為矩陣,計(jì)算它的若干個(gè)顯著的奇異值,作為描述圖像特征的一組特征量。這樣做合理嗎?或者說,若干個(gè)顯著奇異值能描述圖像灰度分布特征嗎?回答卻是否定的。事實(shí)上,你需要仔細(xì)解讀一下SVD的數(shù)學(xué)表達(dá)式。注意每對(duì)奇異向量的乘積uiviT是一個(gè)可分圖像。SVD表達(dá)式表明,用若干個(gè)可分圖像按奇異值進(jìn)行強(qiáng)度加權(quán)后疊加在一起,可以逼近原圖像。因此,除了幾個(gè)顯著奇異值外,如何描述幾個(gè)顯著的可分圖像的特征是你可以發(fā)展的工作。

  從物理和工程上解釋數(shù)學(xué)是工科研究者的優(yōu)勢(shì),不要忘記了這一點(diǎn)。我們還可以舉一個(gè)抽象一點(diǎn)的例子。同倫是數(shù)學(xué)中的一個(gè)概念。一個(gè)拓?fù)淞餍位蚝瘮?shù)如果能夠通過連續(xù)變形變成另一個(gè)拓?fù)淞餍位蚝瘮?shù),我們就說這兩個(gè)拓?fù)淞餍位蚝瘮?shù)彼此同倫。同倫論是數(shù)學(xué)中一個(gè)重要研究領(lǐng)域,并且與Riemann幾何的研究密切關(guān)聯(lián)。僅僅是同倫這個(gè)概念對(duì)工程就很有用。在大規(guī)模集成電路(VLSI)設(shè)計(jì)中需要通過電路仿真,檢查設(shè)計(jì)出的電路是不是符合設(shè)計(jì)要求。一個(gè)基本的檢查是要計(jì)算各個(gè)晶體管在加電后的工作點(diǎn)(電壓和電流)。晶體管特性是非線性的,數(shù)量多,相互直流互連。直接處理這樣的非線性電路問題很困難,并且可能是多解的。電路仿真程序SPICE的研究者提出了一種“源步法”,就是利用了同倫的思想。讓電源電壓從0開始,連續(xù)小步地逐步升到額定值,計(jì)算隨之逐步迭代進(jìn)行。這樣在每一步,都是解一個(gè)線性化的電路問題,并且計(jì)算過程符合加電的實(shí)際物理過程。這種處理大型非線性計(jì)算問題的方法應(yīng)該不限于電路計(jì)算的應(yīng)用。

  不同應(yīng)用領(lǐng)域可以有關(guān)于數(shù)學(xué)概念和表達(dá)的不同解讀,其實(shí)這正是數(shù)學(xué)的奧妙之處。解讀數(shù)學(xué)需要耐性。如果你想把握它,就花一點(diǎn)時(shí)間去解讀它。

  (二)努力尋求數(shù)學(xué)概念的淺近解釋

  工科學(xué)生有形象思維的強(qiáng)勢(shì),但在抽象思維方面常常處于弱勢(shì)。實(shí)際上,學(xué)生們進(jìn)入學(xué)習(xí)多少都有這樣的特點(diǎn)。好的教育工作者會(huì)注意這個(gè)特點(diǎn)。例如前蘇聯(lián)數(shù)學(xué)家柯爾莫哥羅夫建議講解數(shù)學(xué)時(shí)要能用其他科學(xué)領(lǐng)域的例子來吸引學(xué)生,增進(jìn)理解,培養(yǎng)理論聯(lián)系實(shí)際的能力。并且要求以清楚的解釋和廣博的知識(shí)來吸引學(xué)生進(jìn)行思維運(yùn)動(dòng)。柯爾莫哥羅夫的學(xué)生、數(shù)學(xué)家Arnold更是強(qiáng)烈地呼吁數(shù)學(xué)教育必須結(jié)合物理,充分利用幾何直觀,反對(duì)數(shù)學(xué)教育的非幾何化和脫離物理。事實(shí)上,用物理和工程例子將數(shù)學(xué)概念形象化和具體化,達(dá)到淺近易懂,是數(shù)學(xué)家對(duì)學(xué)生(不只是工科學(xué)生)的最重要幫助。在50年代莫斯科大學(xué)組織了一批頂級(jí)的數(shù)學(xué)家寫了數(shù)學(xué)普及名著“數(shù)學(xué)――它的內(nèi)容、方法和意義”。直到現(xiàn)在,世界范圍內(nèi)的科學(xué)工作者中許多人都曾經(jīng)或正在從該書獲得入門知識(shí)。

  許多學(xué)者都承認(rèn)一個(gè)事實(shí):高深理論的原始概念其實(shí)是簡(jiǎn)單的。只是不少“專著”直接從高深理論開始,忽略了對(duì)基礎(chǔ)背景的介紹,學(xué)生接受起來就覺得抽象難懂。工科學(xué)生要想真正掌握數(shù)學(xué)理論,還不得不尋求一個(gè)具體化的或形象化理解,最好有一個(gè)物理的或工程的例子。如果得不到老師的指導(dǎo),你就得準(zhǔn)備多花一點(diǎn)功夫。有一些方法可以供參考。其一是盡量利用百科全書那樣的工具,包括Wikipedia的網(wǎng)絡(luò)百科,它常?梢詭椭惚M可能淺近地理解基本知識(shí)。其二是多參閱幾本講述同一個(gè)理論的書或涉及該理論的文章,從中發(fā)現(xiàn)你可以理解的內(nèi)容。如果一時(shí)難以找到很切合的參考,可以暫時(shí)放一放,不必鉆牛角尖。常常,你在工程學(xué)科中的研究積累會(huì)幫助你開拓思路,甚至找到領(lǐng)悟的靈感。

  工科學(xué)生有必要增強(qiáng)自信。某些數(shù)學(xué)概念內(nèi)涵的神秘性其實(shí)只是我們自己的感覺而已。當(dāng)然,抽象和嚴(yán)格是數(shù)學(xué)科學(xué)性的精髓。但這并不妨礙可以將數(shù)學(xué)概念和物理或幾何直觀聯(lián)系起來。我們這里解說一兩個(gè)例子,如有謬誤請(qǐng)專家不吝賜教。

  ――緊集(Compactset),閉區(qū)間或有界閉集概念的拓廣!坝邢蘧S閉區(qū)間”是一個(gè)易懂、易用的概念。它有一個(gè)很直觀的性質(zhì),就是它在每個(gè)維上有下確界和上確界。此外,孤立點(diǎn)也很特別,不需要考慮它的任何“近鄰”。引入“緊集”的主要?jiǎng)右蚴菫榱藬U(kuò)展有限維閉區(qū)間的概念,使得可以包含無窮維空間的點(diǎn)集,或者是由一類函數(shù)組成的集合。緊集的機(jī)巧定義就達(dá)到了這個(gè)目的。

  緊集最有用的性質(zhì)是它的有界性和可分性。這里,一個(gè)集合可分,是指存在著一個(gè)可數(shù)集合在該集中稠密。在有限維空間中,緊集的充分必要條件是有界和閉性。同時(shí),在Hausdorff空間中,緊集都是閉的。這含蓋了分析中常用的空間,如所有的距離空間,拓?fù)淙,和拓(fù)淞餍巍T诜荋ausdorff空間可以構(gòu)造出例子表明緊集的閉性不一定成立。

  緊集的例子如:有限維閉區(qū)間;Rn中的有限個(gè)孤立點(diǎn);含極限點(diǎn)在內(nèi)的孤立有界點(diǎn)列集合;所有一致有界并等度連續(xù)的函數(shù)集合。在一維上的“緊支集”可以是指一個(gè)閉區(qū)間,也可以指實(shí)軸上一組有限個(gè)離散柵點(diǎn)。

  Hausdorff空間是指符合分離公理的拓?fù)淇臻g:如果集合中有兩個(gè)元不相等,則它們必定有不同的鄰域。細(xì)細(xì)思考一下你會(huì)發(fā)現(xiàn),分離公理事實(shí)上是序列收斂性論證的基本依據(jù):按鄰域收斂,并且收斂有唯一性。

  ――拓?fù)洌═opology),集合元素之間相互接觸或連接的關(guān)系。

  基本的拓?fù)鋵W(xué)研究幾何形體在連續(xù)變形下保持不變的性質(zhì),例如連通性。典型的問題有哥尼斯堡七橋問題,四色問題,布線平面化問題等等。

  既然拓?fù)涫侵讣显氐慕佑|或連接關(guān)系,它顯然是更一般的幾何性質(zhì),而不限于常規(guī)的Euclid幾何性質(zhì)。例如,電路拓?fù)鋱D上兩個(gè)節(jié)點(diǎn)之間有支路相連,這可以與物理連接關(guān)系一致,但與物理元件的實(shí)際空間位置不必一致。

  當(dāng)集合元素在某個(gè)連續(xù)域中取值時(shí),就需要將問題放到“拓?fù)淇臻g”中去研究。在拓?fù)淇臻g中,常規(guī)的距離定義不一定有意義,而點(diǎn)列的收斂可以通過“充分小鄰域”和“覆蓋”這樣的概念來定義和論證。一般拓?fù)鋵W(xué)使用公理化方法研究連續(xù)性問題,概念變得更加抽象,并一直與微分幾何、抽象代數(shù)等學(xué)科并行發(fā)展。

  網(wǎng)絡(luò)拓?fù),是指網(wǎng)絡(luò)的基本元素“頂點(diǎn)”和“邊”的連接關(guān)系。例如用頂點(diǎn)來表示一個(gè)國家,兩個(gè)頂點(diǎn)之間有邊相連,表示兩個(gè)國家接壤。關(guān)于網(wǎng)絡(luò)拓?fù)涞膶W(xué)科分支通常稱為圖論。用圖論方法研究的典型數(shù)學(xué)問題有一大類組合優(yōu)化問題,最優(yōu)布線問題,流圖分析,邏輯分析,交通流和數(shù)據(jù)流分析等等。

  雖然拓?fù)涫菐缀涡误w在連續(xù)變形下不變的性質(zhì),但在應(yīng)用中發(fā)現(xiàn)限制形體(結(jié)構(gòu))的拓?fù)洳蛔兛赡艿貌坏阶顑?yōu)解。于是希望,如果有必要,能夠通過連續(xù)演化實(shí)現(xiàn)拓?fù)浣Y(jié)構(gòu)的改變。這一般地還是一個(gè)未解決問題,但也有解決得好的例子。例如希望將二維平面上的單連通區(qū)域連續(xù)地演化出多連通區(qū)域或多個(gè)單連通區(qū)域,直接在二維平面上不大好辦。但如果擴(kuò)充到三維,構(gòu)造一個(gè)三維函數(shù),并使用水平截集獲得二維區(qū)域,就能容易地解決。這個(gè)方法已經(jīng)成功地用于圖像的活動(dòng)圍道分割等處理算法。

  ――流形(Manifold),受一定約束的某個(gè)(一維或多維)變量所有可能狀態(tài)的集合。在數(shù)學(xué)文獻(xiàn)中,流形有一個(gè)抽象的定義:流形是一類拓?fù)淇臻g,其中每個(gè)點(diǎn)都有鄰域,而這種鄰域與Rn中的單位開球在拓?fù)渖鲜峭叩摹?/p>

  流形的含義十分廣泛,并且可以定義各種各樣的流形?臻g是流形。然而流形可以是某種“可彎曲”的空間(通常將Euclid空間視為“平直”的空間)。3維空間中的球面是流形的一個(gè)例子,而球面上任何一條經(jīng)線或緯線是一個(gè)子流形;谇蛎娼⒌膸缀螌W(xué)與Euclid幾何學(xué)是不同的。

  在物理上流形這個(gè)概念有一個(gè)重要應(yīng)用,用它來表現(xiàn)某個(gè)受約束的物理量的全局行為。例如,機(jī)器臂可達(dá)的所有極限位置。在模式識(shí)別問題中(如人臉識(shí)別),描述單個(gè)個(gè)體不同形態(tài)的一系列N維特征量樣本構(gòu)成N維空間中的一個(gè)流形上。不同個(gè)體有不同的流形。這些流形構(gòu)成了進(jìn)行模式識(shí)別的基礎(chǔ)。從這個(gè)例子可以看出,即使你關(guān)注的流形不一定能夠被解析地表達(dá)出來,它也為你提供了一個(gè)處理問題的明晰概念。

  微分流形或平滑流形是指可在其上實(shí)施微分運(yùn)算的流形。

  想象在曲面微分流形上有兩個(gè)十分靠近的點(diǎn),它們之間的坐標(biāo)差為{dxi},其Euclid距離就是dL=(∑dxi2)1/2。然而,從一點(diǎn)只能沿流形的測(cè)地線到另一點(diǎn),沿測(cè)地線的距離ds會(huì)大于Euclid距離。于是將ds定義為ds=(∑gijdxidxj2)1/2。其中(gij)是一個(gè)沿流形表面逐點(diǎn)定義的對(duì)稱正定矩陣,稱為Riemann度量,用來描述對(duì)距離元的校正。定義了Riemann度量的微分流形稱為Riemann流形。

  在信息處理技術(shù)中可以將概率分布模型p(y|x;θ)全體視為參數(shù)空間θ中的一個(gè)Riemann流形。當(dāng)參數(shù)θ變成θ+Δθ時(shí),p(y|x;θ)和p(y|x;θ+Δθ)之間的Kullback-Leibler距離正好等于(ΔθTGΔθ),這里G是Fisher信息矩陣。由此可見,G正好是這種Riemann流形的Riemann度量。發(fā)展這些概念可以建立起概率模型參數(shù)估計(jì)的新方法,用于例如盲源分離、盲辨識(shí)、神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法等等。由于流形有直觀的幾何解釋,這種數(shù)學(xué)概念和方法又稱為信息幾何。以上所解說的幾個(gè)數(shù)學(xué)概念僅僅希望起到拋磚引玉的作用。更多的入門知識(shí)顯然不是這樣的講座適合介紹的,應(yīng)該期望得到數(shù)學(xué)家門的幫助。我們希望工科學(xué)生消除數(shù)學(xué)的神秘感?聽柲缌_夫說,應(yīng)該把泛函分析方法當(dāng)作日常工具來應(yīng)用。雖然我們一下子作不到,只要不忘記有機(jī)會(huì)就用它,你會(huì)發(fā)現(xiàn),你論文的學(xué)術(shù)水準(zhǔn)會(huì)有所提高,得到的評(píng)價(jià)會(huì)有所不同。

【談?wù)劰た茖W(xué)生如何學(xué)習(xí)數(shù)學(xué)呢】相關(guān)文章:

如何掌握學(xué)習(xí)數(shù)學(xué)的好方法呢05-10

談?wù)勅绾闻囵B(yǎng)學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)自信心05-06

談?wù)勑率秩绾螌W(xué)習(xí)PHP08-12

談?wù)動(dòng)變涸跀?shù)學(xué)學(xué)習(xí)中如何做數(shù)學(xué)06-21

如何讓小學(xué)數(shù)學(xué)學(xué)習(xí)更高效呢06-19

談?wù)勅绾闻囵B(yǎng)孩子學(xué)習(xí)悟性05-06

談?wù)勅绾无D(zhuǎn)化數(shù)學(xué)學(xué)困生06-18

如何學(xué)習(xí)好語文呢07-10

如何學(xué)好初中數(shù)學(xué)呢06-22