- 相關(guān)推薦
數(shù)學(xué)奧數(shù)專題之火車過橋問題
數(shù)學(xué)來源于生活,又服務(wù)于生活。請大家看這樣的場景,一輛火車呼嘯而過,火車頭牽動著一串串長長的車廂,在鐵道上奔馳。一會兒過橋梁,一會兒鉆山洞,迅速奔向遠方。在火車的行進過程中,也產(chǎn)生了一類比較特殊的應(yīng)用題!盎疖囘^橋問題”這也是行程問題中的較難理解的一部分內(nèi)容。以下是小編為大家整理的數(shù)學(xué)奧數(shù)專題之火車過橋問題,供大家參考。
例1、一列長300米的火車以每分1080米的速度通過一座大橋。從車頭開上橋到車尾離開橋一共需3分。這座大橋長多少米?
例2、某人步行的速度為每秒2米.一列火車從后面開來,超過他用了10秒.已知火車長90米.求火車的速度。
例3、在環(huán)形跑道上,兩人都按順時針方向跑時,每12分鐘相遇一次,如果兩人速度不變,其中一人改成按逆時針方向跑,每隔4分鐘相遇一次,問兩人各跑一圈需要幾分鐘?
大膽闖關(guān):
1、一列長300米的火車,以每分1080米的速度通過一座長為940米的在橋,從車頭開上橋到車尾離開橋需要多少分鐘?
2、一列火車通過530米的橋需40秒鐘,以同樣的速度穿過380米的山洞需30秒鐘。求這列火車的速度是多少米/秒,全長是多少米?
3、鐵路沿線的電桿間隔是40米,某旅客在運行的火車中,從看到第一根電線桿到看到第51根電線桿正好是2分鐘,火車每小時行多少千米。
4、一個人站在鐵道旁,聽見行近來的火車汽笛聲后,再過57秒鐘火車經(jīng)過他面前.已知火車汽笛時離他1360米;(軌道是筆直的)聲速是每秒鐘340米,求火車的速度?(得數(shù)保留整數(shù))
一列450米長的貨車,以每秒12米的速度通過一座570米長的鐵橋,需要幾秒鐘?
5、現(xiàn)有兩列火車同時同方向齊頭行進,行12秒后快車超過慢車?燔嚸棵胄18米,慢車每秒行10米。如果這兩列火車車尾相齊同時同方向行進,則9秒后快車超過慢車,求兩列火車的車身長。
6、李明和張憶在300米的環(huán)形跑道上練習(xí)跑步,李明每秒跑5米,張憶每秒跑3米,兩人同時從起跑點出發(fā)同向而行,問出發(fā)后李明第一次追上張憶時,張憶跑了多少米?
6、速度為快、中、慢的三輛汽車同時從同一地點出發(fā),沿同一公路追趕前面一個騎車人,這三輛車分別用6分鐘、10分鐘、12分鐘追上騎車人,現(xiàn)在知道快車每小時24千米,中速車每小時20千米,那么慢車每小時行多少千米?(選做題)
7、周長為400米的圓形跑道上,有相距100米的A、B兩點,甲、乙兩人分別從A、B兩點同時相背而跑,兩人相遇后,乙立刻轉(zhuǎn)身與甲同向而跑,當(dāng)甲跑到A時,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不變,那么追上乙時,甲共跑了多少米(從出發(fā)時算起)?(選做題)
【考點1】求橋長
例1、一列火車長100米。以每秒十米的速度通過一座鐵橋。從火車上橋到車尾離開橋共用30秒鐘。問這座橋長多少米?
分析:大家可以用鉛筆盒和鉛筆做實物模擬。鉛筆盒當(dāng)作鐵橋,鉛筆當(dāng)作火車。鉛筆的橡皮頭當(dāng)作火車頭,鉛筆尖當(dāng)作火車尾。移動鉛筆,當(dāng)筆頭爬上鉛筆盒,到筆尖離開鉛筆盒。筆頭所走的路程正好是鉛筆盒長加上鉛筆的長度。
火車過橋時路程=橋長+車長
解:10×30-200=200(米)
答:這座橋長200米
【考點2】求車長
例2、一列火車。以每秒八米的速度緩緩地通過一座鐵路大橋。已知橋長450米;疖囃ㄟ^該橋用了120秒。求火車的車長是多少米?
分析:首先我們應(yīng)弄清楚什么叫火車通過該橋。這是指火車車頭上橋到火車車尾離橋。才能算火車通過該橋。這時火車一共行駛了車身長家橋長這段距離。
思考過程:①路程=速度×?xí)r間。求出火車過橋所行駛的距離(也就是行駛的總路程)。
、诳偮烦泰仒蜷L=火車的車長
解:8×120﹣450
=960-450
=510(米)
答:火車的車長是510米。
【考點3】求時間
一輛火車以每秒18米的速度通過一條長324米的隧道。車身長18米。求這輛汽車全部通過隧道要用多長時間?
分析:首先我們要清楚什么叫全部通過隧道。這是指?火車的車頭進入隧道到車尾離開隧道,才叫全部通過隧道。這時所行駛的路程:火車過橋時路程=隧道長+車長。根據(jù)“時間=路程÷速度”就可求出結(jié)果。
解:(324+18)÷18
=342÷18
=19(秒)
【數(shù)學(xué)奧數(shù)專題之火車過橋問題】相關(guān)文章:
奧數(shù)專題之還原問題04-08
奧數(shù)專題之植樹問題03-28
奧數(shù)專題之追及問題07-24
奧數(shù)專題:行程問題07-31
奧數(shù)問題之還原問題08-02
長沙小升初奧數(shù)行程問題之火車過橋知識點講解08-14
奧數(shù)的專題之年齡問題試題10-25
奧數(shù)工程問題專題100道09-26