八年級數(shù)學上冊《全等三角形》知識點解析
在現(xiàn)實學習生活中,相信大家一定都接觸過知識點吧!知識點有時候特指教科書上或考試的知識。為了幫助大家掌握重要知識點,下面是小編收集整理的八年級數(shù)學上冊《全等三角形》知識點解析,歡迎大家分享。
八年級數(shù)學上冊《全等三角形》知識點解析1
一、定義
1.全等形:形狀大小相同,能完全重合的兩個圖形.
2.全等三角形:能夠完全重合的兩個三角形.
二、重點
1.平移,翻折,旋轉(zhuǎn)前后的圖形全等.
2.全等三角形的性質(zhì):全等三角形的對應邊相等,全等三角形的對應角相等.
3.全等三角形的判定:
SSS三邊對應相等的兩個三角形全等【邊邊邊】
SAS兩邊和它們的夾角對應相等的兩個三角形全等【邊角邊】
ASA兩角和它們的夾邊對應相等的兩個三角形全等【角邊角】
AAS兩個角和其中一個角的對邊開業(yè)相等的兩個三角形全等【邊角邊】
HL斜邊和一條直角邊對應相等的兩個三角形全等【斜邊,直角邊】
4.角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等.
5.角平分線的判定:角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上.
八年級數(shù)學上冊《全等三角形》知識點解析2
全等三角形
定義:能夠完全重合的兩個三角形叫做全等三角形。
理解:①全等三角形形狀與大小完全相等,與位置無關;
②一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形;
③三角形全等不因位置發(fā)生變化而改變。
通過上面對全等三角形知識點的講解學習,相信同學們對全等三角形的知識已經(jīng)能很好的掌握了吧,后面我們進行更多知識點的鞏固學習。
初中數(shù)學知識點總結(jié):平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的.構(gòu)成
對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構(gòu)成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質(zhì)
下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
、诓粶蕘G常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項負號放括號外
、呃ㄌ杻(nèi)同類項合并。
八年級數(shù)學上冊《全等三角形》知識點解析3
一、三角形全等的判定
1.三組對應邊分別相等的兩個三角形全等(SSS)。
2.有兩邊及其夾角對應相等的兩個三角形全等(SAS)。
3.有兩角及其夾邊對應相等的兩個三角形全等(ASA)。
4.有兩角及一角的對邊對應相等的兩個三角形全等(AAS)。
5.直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL)。
二、全等三角形的性質(zhì)
1.全等三角形的對應邊相等;全等三角形的對應角相等。
2.全等三角形的周長、面積相等。
3.全等三角形的對應邊上的高對應相等。
4.全等三角形的對應角的角平分線相等。
5.全等三角形的對應邊上的中線相等。
三、找全等三角形的方法
(1)可以從結(jié)論出發(fā),看要證明相等的兩條線段(或角)分別在哪兩個可能全等的三角形中;
(2)可以從已知條件出發(fā),看已知條件可以確定哪兩個三角形相等;
(3)從條件和結(jié)論綜合考慮,看它們能一同確定哪兩個三角形全等;
(4)若上述方法均不行,可考慮添加輔助線,構(gòu)造全等三角形。
三角形全等的證明中包含兩個要素:邊和角。
四、構(gòu)造輔助線的常用方法
關于角平分線的輔助線:當題目的條件中出現(xiàn)角平分線時,要想到根據(jù)角平分線的性質(zhì)構(gòu)造輔助線。
角平分線具有兩條性質(zhì):①角平分線具有對稱性;②角平分線上的點到角兩邊的距離相等。
數(shù)學待定系數(shù)法
在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。
數(shù)學中什么叫棱
物體上的條狀突起,或不同方向的兩個平面相連接的部分。棱柱是幾何學中的一種常見的三維多面體,指上下底面平行且全等,側(cè)棱平行且相等的封閉幾何體。在正方體和長方體中,具有12個棱長,且棱長在不同的幾何體中有不同的特點。
【八年級數(shù)學上冊《全等三角形》知識點解析】相關文章:
數(shù)學八年級上冊知識點12-07
數(shù)學上冊知識點08-02
數(shù)學八年級上冊知識點15篇01-23
數(shù)學八年級上冊十三章知識點11-17
數(shù)學人教版八年級上冊知識點07-31
高考數(shù)學解析幾何知識點09-06
中考八年級上冊數(shù)學知識點11-09
八年級上冊數(shù)學知識點提綱11-16