數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)
在我們平凡無(wú)奇的學(xué)生時(shí)代,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)就是掌握某個(gè)問(wèn)題/知識(shí)的學(xué)習(xí)要點(diǎn)。還在為沒(méi)有系統(tǒng)的知識(shí)點(diǎn)而發(fā)愁嗎?下面是小編幫大家整理的數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn),僅供參考,歡迎大家閱讀。
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn) 1
一次函數(shù)的定義
一次函數(shù),也作線性函數(shù),在x,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定時(shí),可以用一元一次方程確定另一個(gè)變量的值。
函數(shù)的表示方法
列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。
解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。
一次函數(shù)的性質(zhì)
一般地,形如y=kx+b(k,b是常數(shù),且k0),那么y叫做x的一次函數(shù),當(dāng)b=0時(shí),y=kx+b即y=kx,所以說(shuō)正比例函數(shù)是一種特殊的一次函數(shù)
注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0)
a).k不為0
b).x的指數(shù)是1
c).b取任意實(shí)數(shù)
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn) 2
一次函數(shù)與一元一次方程的關(guān)系
一元一次方程ax+b=0(a,b為常數(shù),且a≠0)可看作一次函數(shù)y=ax+b的函數(shù)值是0的一種特例,其解是直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo),所以解一元一次方程ax+b=0可以轉(zhuǎn)化為當(dāng)一次函數(shù)y=ax+b的值為0時(shí),求相應(yīng)自變量x的值,因此可以利用圖像來(lái)解一元一次方程。
求直線y=kx+b與x軸交點(diǎn)時(shí),可令y=0,得到一元一次方程kx+b=0,解方程得x=-,則- 就是直線y=kx+b與x軸交點(diǎn)的橫坐標(biāo)。
反過(guò)來(lái)解一元一次方程也可以看作是求直線y=kx+b與x軸交點(diǎn)的橫坐標(biāo)的值。
待定系數(shù)法
先設(shè)出函數(shù)解析式,在根據(jù)條件確定解析式中的未知的系數(shù),從而寫(xiě)出這個(gè)式子的方法,叫待定系數(shù)法。
用待定系數(shù)法確定解析式的步驟:
①設(shè)函數(shù)表達(dá)式為:y=kx 或 y=kx+b
、趯⒁阎c(diǎn)的坐標(biāo)代入函數(shù)表達(dá)式,得到方程(組)
、劢夥匠袒蚪M,求出待定的系數(shù)的值。
、馨训闹荡厮O(shè)表達(dá)式,從而寫(xiě)出需要的解析式。
注意; 正比例函數(shù)y=kx只要有一個(gè)條件就可以。而一次函數(shù)y=kx+b需要有兩個(gè)條件。
性質(zhì)
、賵D像形:是一條直線。稱為直線y=kx+b
、谙笙扌:
當(dāng)k>0、b>0時(shí),直線經(jīng)過(guò)第一、二、三象限,不過(guò)四象限。
當(dāng)k>0、b<0時(shí),直線經(jīng)過(guò)第一、三、四象限。不過(guò)二象限
當(dāng)k<0 b="">0時(shí),直線經(jīng)過(guò)第一、二,四象限。不過(guò)三象限
當(dāng)k<0 、b<0時(shí),直線經(jīng)過(guò)第二,三、四象限。不過(guò)一象限
、墼鰷p性:當(dāng)k>0時(shí),直線從左向右上升,隨著x的增大(減小) y也增大(減小)
當(dāng)k<0時(shí),直線從左向右下降。隨著x的增大(減小) y反而而減小(增大)
、苓B續(xù)性:由于自變量取值是全體實(shí)數(shù),所以圖像具有連續(xù)性。(沒(méi)有最大或最小值)
、萁鼐嘈;
當(dāng)b>0時(shí),直線與y軸交于y軸正半軸(交點(diǎn)位于軸上方)
當(dāng)b<0時(shí),直線與y軸交于y軸負(fù)半軸(交點(diǎn)位于軸下方)
、迌A斜性:︱k︱越大,直線越靠向y軸,與x軸正方向的夾角度數(shù)越大,越陡。
⑦平移性; 直線y=kx+b
當(dāng)b>0時(shí),是由直線y=kx 向上平移得到的。
當(dāng)b<0時(shí),是由直線y=kx 向下平移得到的。
一次函數(shù)與正比例函數(shù)關(guān)系
正比例函數(shù)包含于一次函數(shù),即正比例函數(shù)是一次函數(shù);正比例函數(shù)是一次函數(shù)當(dāng)b=0時(shí)的特殊情況。
一次函數(shù)定義
一般地,形如y=kx+b(k、b是常數(shù),k≠0)的函數(shù),叫一次函數(shù)。
(存在條件: ①兩個(gè)變量x、y,②k、b是常數(shù)且k≠0,③自變量x的次數(shù)是1,④自變量x的是整式形式)
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn) 3
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過(guò)如下3個(gè)步驟
。1)列表;
。2)描點(diǎn);
。3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b.(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
當(dāng)b>0時(shí),直線必通過(guò)一、二象限;
當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)
當(dāng)b<0時(shí),直線必通過(guò)三、四象限。
特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限
四、確定一次函數(shù)的表達(dá)式:
已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。
。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b.
。2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b.所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②
。3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt.
2.當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S.g=S-ft.
六、常用公式:(不全,希望有人補(bǔ)充)
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點(diǎn):|x1-x2|/2
3.求與y軸平行線段的中點(diǎn):|y1-y2|/2
4.求任意線段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn) 4
一次函數(shù)的表達(dá)式是=x+b (≠b 、b是常數(shù)),其中是x自變量,是因變量,讀作是x的一次函數(shù),當(dāng)x取一個(gè)值時(shí),有且只有一個(gè)值與x對(duì)應(yīng),如果有兩個(gè)或兩個(gè)以上的值與x對(duì)應(yīng),那么這個(gè)函數(shù)就不是一次函數(shù)。
一次函數(shù)表達(dá)式求解:
一次函數(shù)也叫做線性函數(shù),一般在X,坐標(biāo)軸中用一條直線來(lái)表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定的情況下,可以用一元一次方程來(lái)解答出另一個(gè)變量的值。
一次函數(shù)的表達(dá)方式一般都為=x+b的函數(shù),叫做是X的一次函數(shù),當(dāng)常數(shù)項(xiàng)為零時(shí)的一次函數(shù),可表示為=x(≠0),這時(shí)的常數(shù)也叫比例系數(shù)。常用來(lái)表示一次函數(shù)的方法有解析法,圖像法和列表法。一次函數(shù)的解析式一般分為點(diǎn)斜式,兩點(diǎn)式,截距式。
解答一次函數(shù)的作法最簡(jiǎn)單的就是列表法,取一個(gè)滿足一次函數(shù)表達(dá)式的兩個(gè)點(diǎn)的坐標(biāo),來(lái)確定另一個(gè)未知數(shù)的值。還有一個(gè)描點(diǎn)法。一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。通常情況下=x+b(≠0)的圖象過(guò)(0,b)和(-b/,0)兩點(diǎn)即可畫(huà)出。
一次函數(shù)與一次方程之間的關(guān)系:
一次函數(shù)、方程和不等式是初中數(shù)學(xué)的主要內(nèi)容之一,也是中考的必考知識(shí)點(diǎn),新課程標(biāo)準(zhǔn)把三部分的關(guān)系提到了十分明朗化的程度。因此,應(yīng)該重視這部分內(nèi)容的教學(xué)在教學(xué)中,可以從以下幾個(gè)知識(shí)點(diǎn)進(jìn)行辨析。
任何一個(gè)一元一次方程都可以轉(zhuǎn)化成ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值(從數(shù)的角度);從圖像上來(lái)看,就相當(dāng)于已知直線=ax+b,確定它與x軸的交點(diǎn)橫坐標(biāo)的值(從形的角度)。
利用函數(shù)圖像解方程:-2x+2=0,可以轉(zhuǎn)化為求一次函數(shù)=-2x+2與x軸交點(diǎn)的橫坐標(biāo)。而=-2x+2與x軸交點(diǎn)的橫坐標(biāo)為1,所以方程-2x+2=0的解為x=1。
注意:解一元一次方程ax+b=0(a≠0)與求函數(shù)=ax+b(a≠0)的圖像與x軸交點(diǎn)的橫坐標(biāo)是同一個(gè)問(wèn)題。不同的是前者從數(shù)的角度來(lái)解決問(wèn)題,后者從形的角度來(lái)解決問(wèn)題。
每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),從數(shù)的角度來(lái)看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)是何值;從形的角度來(lái)看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo),從而使方程組得出答案。
【數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)】相關(guān)文章:
最新初中數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)08-07
八年級(jí)上冊(cè)數(shù)學(xué)書(shū)一次函數(shù)知識(shí)點(diǎn)10-17
八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納06-03
數(shù)學(xué)函數(shù)知識(shí)點(diǎn)12-12
數(shù)學(xué)必考知識(shí)點(diǎn)07-12
數(shù)學(xué)中考知識(shí)點(diǎn)06-29
高考數(shù)學(xué)知識(shí)點(diǎn)10-28
中考數(shù)學(xué)必考知識(shí)點(diǎn)06-16