欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

數(shù)學(xué) 百文網(wǎng)手機站

最新高三數(shù)學(xué)復(fù)習(xí)知識點整理分享

時間:2021-12-07 12:30:34 數(shù)學(xué) 我要投稿

最新高三數(shù)學(xué)復(fù)習(xí)知識點整理五篇分享

  在平時的學(xué)習(xí)中,大家最熟悉的就是知識點吧?知識點在教育實踐中,是指對某一個知識的泛稱。為了幫助大家掌握重要知識點,下面是小編幫大家整理的最新高三數(shù)學(xué)復(fù)習(xí)知識點整理五篇分享,歡迎大家分享。

最新高三數(shù)學(xué)復(fù)習(xí)知識點整理五篇分享

最新高三數(shù)學(xué)復(fù)習(xí)知識點整理五篇分享1

  (1)先看“充分條件和必要條件”

  當(dāng)命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

  但為什么說q是p的必要條件呢?

  事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。

  (2)再看“充要條件”

  若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

  (3)定義與充要條件

  數(shù)學(xué)中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

  顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

  “充要條件”有時還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。

  (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。

最新高三數(shù)學(xué)復(fù)習(xí)知識點整理五篇分享2

  高考試題重在考查對知識理解的準(zhǔn)確性、深刻性,重在考查知識的綜合靈活運用。它著眼于知識點新穎巧妙的組合,試題新而不偏,活而不過難;著眼于對數(shù)學(xué)思想方法、數(shù)學(xué)能力的考查。高考試題這種積極導(dǎo)向,決定了我們在教學(xué)中必須以數(shù)學(xué)思想指導(dǎo)知識、方法的運用,整體把握各部分知識的內(nèi)在聯(lián)系。只有加強數(shù)學(xué)思想方法的教學(xué),優(yōu)化學(xué)生的思維,全面提高數(shù)學(xué)能力,才能提高學(xué)生解題水平和應(yīng)試能力。

  高考復(fù)習(xí)有別于新知識的教學(xué)。它是在學(xué)生基本掌握了中學(xué)數(shù)學(xué)知識體系、具備了一定的解題經(jīng)驗的基礎(chǔ)上的復(fù)課數(shù)學(xué),也是在學(xué)生基本認(rèn)識了各種數(shù)學(xué)基本方法、思維方法及數(shù)學(xué)思想的基礎(chǔ)上的復(fù)課數(shù)學(xué)。其目的在于深化學(xué)生對基礎(chǔ)知識的理解,完善學(xué)生的知識結(jié)構(gòu),在綜合性強的練習(xí)中進一步形成基本技能,優(yōu)化思維品質(zhì),使學(xué)生在多次的練習(xí)中充分運用數(shù)學(xué)思想方法,提高數(shù)學(xué)能力。高考復(fù)習(xí)是學(xué)生發(fā)展數(shù)學(xué)思想,熟練掌握數(shù)學(xué)方法理想的難得的教學(xué)過程。

  高考復(fù)習(xí)中數(shù)學(xué)思想方法教學(xué)的原則。

  1、把知識的復(fù)習(xí)與思想方法的培養(yǎng)同時納入教學(xué)目的原則。

  各章應(yīng)有明確的數(shù)學(xué)思想方法的教學(xué)目標(biāo),教案中要精心設(shè)計思想方法的教學(xué)過程。

  2、寓思想方法的教學(xué)于完善學(xué)生的知識結(jié)構(gòu)之中、于教學(xué)問題的解決之中的原則。

  知識是思想方法的載體,數(shù)學(xué)問題是在數(shù)學(xué)思想的指導(dǎo)下,運用知識、方法"加工"的對象。皮之不存,毛將焉附?離開具體的數(shù)學(xué)活動的思想方法的教學(xué)是不可能的。

  3、適當(dāng)章節(jié)的強化訓(xùn)練與貫通復(fù)課全程的反復(fù)運用相結(jié)合的`原則。

  數(shù)學(xué)思想方法與數(shù)學(xué)知識的共存性、數(shù)學(xué)思想對數(shù)學(xué)活動的指導(dǎo)作用、被認(rèn)知的思想方法只有在反復(fù)的運用中才能被真正掌握這一教學(xué)規(guī)律,都決定了成功的思想方法和教學(xué)只能是有意識的貫通復(fù)課全程的教學(xué)。特別是有廣泛應(yīng)用性的數(shù)學(xué)思想的教學(xué)更是如此。如數(shù)形結(jié)合的思想,在數(shù)學(xué)的幾乎全部的知識中,處處以數(shù)學(xué)對象的直觀表象及深刻精確的數(shù)量表達(dá)這兩方面給人以啟迪,為問題的解決提供簡捷明快的途徑。它的運用,往往展現(xiàn)出“柳暗花明又一村”般的數(shù)形和諧完美結(jié)合的境地。

  在某種思想方法應(yīng)用頻繁的章節(jié),應(yīng)適當(dāng)強化這種思想方法的訓(xùn)練。如在數(shù)學(xué)歸納法一節(jié),應(yīng)精心設(shè)計循序漸進的組題,在問題解決中提煉并明確總結(jié)聯(lián)合運用不完全歸納法、數(shù)學(xué)歸納法解題這一思想方法,在學(xué)生能熟練運用的基礎(chǔ)上,通過反復(fù)運用,才能形成自覺運用的意識。

最新高三數(shù)學(xué)復(fù)習(xí)知識點整理五篇分享3

  1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  2.判定兩個平面平行的方法:

  (1)根據(jù)定義--證明兩平面沒有公共點;

  (2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;

  (3)證明兩平面同垂直于一條直線。

  3.兩個平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒有公共點”;

  (2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;

  (3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;

  (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;

  (5)夾在兩個平行平面間的平行線段相等;

  (6)經(jīng)過平面外一點只有一個平面和已知平面平行。

最新高三數(shù)學(xué)復(fù)習(xí)知識點整理五篇分享4

  1、集合的概念

  集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

  集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

  2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

  3、集合中元素的特性

  (1)確定性:設(shè)A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

  (3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。

  4、集合的分類

  集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:

  有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。

  無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。

  5、特定的集合的表示

  為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

  (1)全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。

  (2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N或N+。

  (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

  (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

  (5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。

最新高三數(shù)學(xué)復(fù)習(xí)知識點整理五篇分享5

  一、充分條件和必要條件

  當(dāng)命題“若A則B”為真時,A稱為B的充分條件,B稱為A的必要條件。

  二、充分條件、必要條件的常用判斷法

  1.定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可

  2.轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

  3.集合法

  在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:

  若A?B,則p是q的充分條件。

  若A?B,則p是q的必要條件。

  若A=B,則p是q的充要條件。

  若A?B,且B?A,則p是q的既不充分也不必要條件。

  三、知識擴展

  1.四種命題反映出命題之間的內(nèi)在聯(lián)系,要注意結(jié)合實際問題,理解其關(guān)系(尤其是兩種等價關(guān)系)的產(chǎn)生過程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:

  (1)交換命題的條件和結(jié)論,所得的新命題就是原來命題的逆命題;

  (2)同時否定命題的條件和結(jié)論,所得的新命題就是原來的否命題;

  (3)交換命題的條件和結(jié)論,并且同時否定,所得的新命題就是原命題的逆否命題。

  2.由于“充分條件與必要條件”是四種命題的關(guān)系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時,可考慮“正難則反”的原則,即在正面判斷較難時,可轉(zhuǎn)化為應(yīng)用該命題的逆否命題進行判斷。一個結(jié)論成立的充分條件可以不止一個,必要條件也可以不止一個。

【最新高三數(shù)學(xué)復(fù)習(xí)知識點整理五篇分享】相關(guān)文章:

高三數(shù)學(xué)知識點復(fù)習(xí)整理分享12-15

高三數(shù)學(xué)知識點整理分享12-22

關(guān)于高三化學(xué)復(fù)習(xí)知識點整理11-18

高三數(shù)學(xué)知識點精選最新五篇分享12-07

高三數(shù)學(xué)知識點精選最新5篇分享08-05

高三數(shù)學(xué)知識點分享08-07

高三數(shù)學(xué)復(fù)習(xí)知識點08-11

高三總復(fù)習(xí)化學(xué)必修一復(fù)習(xí)知識點整理12-07

高三物理考試必考知識點整理分享5篇12-07