欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

數(shù)學(xué) 百文網(wǎng)手機(jī)站

高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納

時(shí)間:2022-10-25 12:53:03 數(shù)學(xué) 我要投稿

高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納匯集

  在平日的學(xué)習(xí)中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)就是一些常考的內(nèi)容,或者考試經(jīng)常出題的地方。掌握知識(shí)點(diǎn)是我們提高成績(jī)的關(guān)鍵!下面是小編幫大家整理的高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納,歡迎閱讀與收藏。

高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納匯集

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 1

  1.函數(shù)思想:把某變化過(guò)程中的一些相互制約的變量用函數(shù)關(guān)系表達(dá)出來(lái),并研究這些量間的相互制約關(guān)系,最后解決問(wèn)題,這就是函數(shù)思想;

  2.應(yīng)用函數(shù)思想解題,確立變量之間的函數(shù)關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個(gè)步驟:

  (1)根據(jù)題意建立變量之間的函數(shù)關(guān)系式,把問(wèn)題轉(zhuǎn)化為相應(yīng)的函數(shù)問(wèn)題;

  (2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識(shí)解決問(wèn)題;

  (3)方程思想:在某變化過(guò)程中,往往需要根據(jù)一些要求,確定某些變量的值,這時(shí)常常列出這些變量的方程或(方程組),通過(guò)解方程(或方程組)求出它們,這就是方程思想;

  3.函數(shù)與方程是兩個(gè)有著密切聯(lián)系的數(shù)學(xué)概念,它們之間相互滲透,很多方程的問(wèn)題需要用函數(shù)的知識(shí)和方法解決,很多函數(shù)的問(wèn)題也需要用方程的方法的支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 2

  集合的有關(guān)概念

  1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素

  注意:①集合與集合的元素是兩個(gè)不同的概念,教科書(shū)中是通過(guò)描述給出的,這與平面幾何中的點(diǎn)與直線的概念類(lèi)似。

  ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無(wú)序性({a,b}與{b,a}表示同一個(gè)集合)。

 、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件

  2)集合的表示方法:常用的有列舉法、描述法和圖文法

  3)集合的分類(lèi):有限集,無(wú)限集,空集。

  4)常用數(shù)集:N,Z,Q,R,N

  子集、交集、并集、補(bǔ)集、空集、全集等概念

  1)子集:若對(duì)x∈A都有x∈B,則AB(或AB);

  2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

  3)交集:A∩B={x|x∈A且x∈B}

  4)并集:A∪B={x|x∈A或x∈B}

  5)補(bǔ)集:CUA={x|xA但x∈U}

  注意:A,若A≠?,則?A;

  若且,則A=B(等集)

  集合與元素

  掌握有關(guān)的術(shù)語(yǔ)和符號(hào),特別要注意以下的符號(hào):(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。

  子集的幾個(gè)等價(jià)關(guān)系

 、貯∩B=AAB;②A∪B=BAB;③ABCuACuB;

  ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

  交、并集運(yùn)算的性質(zhì)

 、貯∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

  ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

  有限子集的個(gè)數(shù):

  設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

  練習(xí)題:

  已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關(guān)系()

  A)M=NPB)MN=PC)MNPD)NPM

  分析一:從判斷元素的共性與區(qū)別入手。

  解答一:對(duì)于集合M:{x|x=,m∈Z};對(duì)于集合N:{x|x=,n∈Z}

  對(duì)于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 3

  1.等差數(shù)列通項(xiàng)公式

  an=a1+(n-1)d

  n=1時(shí)a1=S1

  n≥2時(shí)an=Sn-Sn-1

  an=kn+b(k,b為常數(shù))推導(dǎo)過(guò)程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

  2.等差中項(xiàng)

  由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡(jiǎn)單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。

  有關(guān)系:A=(a+b)÷2

  3.前n項(xiàng)和

  倒序相加法推導(dǎo)前n項(xiàng)和公式:

  Sn=a1+a2+a3+·····+an

  =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

  Sn=an+an-1+an-2+······+a1

  =an+(an-d)+(an-2d)+······+[an-(n-1)d]②

  由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)

  ∴Sn=n(a1+an)÷2

  等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:

  Sn=n(a1+an)÷2=na1+n(n-1)d÷2

  Sn=dn2÷2+n(a1-d÷2)

  亦可得

  a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

  an=2sn÷n-a1

  有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

  4.等差數(shù)列性質(zhì)

  一、任意兩項(xiàng)am,an的關(guān)系為:

  an=am+(n-m)d

  它可以看作等差數(shù)列廣義的通項(xiàng)公式。

  二、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:

  a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N

  三、若m,n,p,q∈N,且m+n=p+q,則有am+an=ap+aq

  四、對(duì)任意的k∈N,有

  Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 4

  定義:

  x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。

  范圍:

  傾斜角的取值范圍是0°≤α<180°。

  理解:

  (1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;

  (2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。

  意義:

 、僦本的傾斜角,體現(xiàn)了直線對(duì)x軸正向的傾斜程度;

 、谠谄矫嬷苯亲鴺(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;

 、蹆A斜角相同,未必表示同一條直線。

  公式:

  k=tanα

  k>0時(shí)α∈(0°,90°)

  k<0時(shí)α∈(90°,180°)

  k=0時(shí)α=0°

  當(dāng)α=90°時(shí)k不存在

  ax+by+c=0(a≠0)傾斜角為A,

  則tanA=-a/b,

  A=arctan(-a/b)

  當(dāng)a≠0時(shí),

  傾斜角為90度,即與X軸垂直

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 5

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

  x=-b/2a。

  對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

  |a|越大,則拋物線的開(kāi)口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  Δ=b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 6

  1.數(shù)列的函數(shù)理解:

  ①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個(gè)定義域?yàn)檎麛?shù)集N或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。②用函數(shù)的觀點(diǎn)認(rèn)識(shí)數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項(xiàng)公式給出數(shù)列和以遞推公式給出數(shù)列。③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項(xiàng)公式。

  2.通項(xiàng)公式:數(shù)列的第N項(xiàng)an與項(xiàng)的序數(shù)n之間的關(guān)系可以用一個(gè)公式an=f(n)來(lái)表示,這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式。

  數(shù)列通項(xiàng)公式的特點(diǎn):

  (1)有些數(shù)列的通項(xiàng)公式可以有不同形式,即不。

  (2)有些數(shù)列沒(méi)有通項(xiàng)公式(如:素?cái)?shù)由小到大排成一列2,3,5,7,11,...)。

  3.遞推公式:如果數(shù)列{an}的第n項(xiàng)與它前一項(xiàng)或幾項(xiàng)的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的遞推公式。

  數(shù)列遞推公式特點(diǎn):

  (1)有些數(shù)列的遞推公式可以有不同形式,即不。

  (2)有些數(shù)列沒(méi)有遞推公式。

  有遞推公式不一定有通項(xiàng)公式。

  注:數(shù)列中的項(xiàng)必須是數(shù),它可以是實(shí)數(shù),也可以是復(fù)數(shù)。

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 7

  1.函數(shù)的奇偶性

  (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2.復(fù)合函數(shù)的有關(guān)問(wèn)題

  (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

  (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3.函數(shù)圖像(或方程曲線的對(duì)稱性)

  (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

  (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

  (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

  4.函數(shù)的周期性

  (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

  (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

  (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5.方程k=f(x)有解k∈D(D為f(x)的值域);

  a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  (1)(a>0,a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

  (4)alogaN=N(a>0,a≠1,N>0);

  6.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

  (1)A中元素必須都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  7.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  8.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

  (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

  (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

  (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

  (4)周期函數(shù)不存在反函數(shù);

  (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

  (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  9.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

  二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

  10.依據(jù)單調(diào)性

  利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題;

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 8

  兩個(gè)平面的位置關(guān)系:

  (1)兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)

  (2)兩個(gè)平面的位置關(guān)系:

  兩個(gè)平面平行——沒(méi)有公共點(diǎn);兩個(gè)平面相交——有一條公共直線。

  a、平行

  兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

  兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。

  b、相交

  二面角

  (1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

  (2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

  (3)二面角的棱:這一條直線叫做二面角的棱。

  (4)二面角的面:這兩個(gè)半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  兩平面垂直

  兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥

  兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直

  兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。

  二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)

  棱錐

  棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。

  棱錐的性質(zhì):

  (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個(gè)特殊的直角三角形

  a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

  b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

  集合

  集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門(mén)研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年—1918年,德國(guó)數(shù)學(xué)家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

  集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過(guò)直觀、公理的方法來(lái)下“定義”。

  集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡(jiǎn)稱為元)。

  集合與集合之間的關(guān)系

  某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫(xiě)作A B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫(xiě)作A屬于B。中學(xué)教材課本里將符號(hào)下加了一個(gè)不等于符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)

  2高一函數(shù)知識(shí)點(diǎn)歸納

  (一)、映射、函數(shù)、反函數(shù)

  1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射.

  2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

  (1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù).

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

  (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域.

  注意①:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

 、谑煜さ膽(yīng)用,求f-1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過(guò)程,從而簡(jiǎn)化運(yùn)算.

  (二)、函數(shù)的解析式與定義域

  1、函數(shù)及其定義域是不可分割的整體,沒(méi)有定義域的函數(shù)是不存在的,因此,要正確地寫(xiě)出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類(lèi)型:

  (1)有時(shí)一個(gè)函數(shù)來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;

  (2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

  ①分式的分母不得為零;

 、谂即畏礁谋婚_(kāi)方數(shù)不小于零;

  ③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

  ④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

  ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

  應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集).

  (3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可.

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域. 2、求函數(shù)的解析式一般有四種情況

  (1)根據(jù)某實(shí)際問(wèn)題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.

  (2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.

  (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.

  (4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.

  (三)、函數(shù)的值域與最值

  1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

  (1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

  (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.

  (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

  (4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

  (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

  (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異.

  如函數(shù)的值域是(0,16],最大值是16,無(wú)最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無(wú)最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見(jiàn)定義域?qū)瘮?shù)的值域或最值的影響.

  3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用

  函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問(wèn)題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的`制約,以便能正確求得最值.

  (四)、函數(shù)的奇偶性

  1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

  2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式。

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 9

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性;2.元素的互異性;3.元素的無(wú)序性

  說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

  (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

  3、集合的表示:{}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法.

  注意。撼S脭(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  關(guān)于屬于的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作aA,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上.

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法.用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法.

 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}

  4、集合的分類(lèi):

  1.有限集含有有限個(gè)元素的集合

  2.無(wú)限集含有無(wú)限個(gè)元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.包含關(guān)系子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.相等關(guān)系(55,且55,則5=5)

  實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}元素相同

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集.AA

  ②真子集:如果AB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄B,BC,那么AC

  ④如果AB同時(shí)BA那么A=B

  3.不含任何元素的集合叫做空集,記為

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集.

  三、集合的運(yùn)算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作AB(讀作A交B),即AB={x|xA,且xB}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

  3、交集與并集的性質(zhì):AA=A,A=,AB=BA,AA=A,

  A=A,AB=BA.

  4、全集與補(bǔ)集

  (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.

  (3)性質(zhì):⑴CU(CUA)=A⑵(CUA)⑶(CUA)A=U

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 10

  易錯(cuò)點(diǎn)1:遺忘空集致誤

  由于空集是任何非空集合的真子集,因此B=?時(shí)也滿足B?A.解含有參數(shù)的集合問(wèn)題時(shí),要特別注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況.

  易錯(cuò)點(diǎn)2:忽視集合元素的三性致誤

  集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求.

  易錯(cuò)點(diǎn)3:混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對(duì)“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論.

  易錯(cuò)點(diǎn)4:充分條件、必要條件顛倒致誤

  對(duì)于兩個(gè)條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;

  如果B?A成立,則A是B的必要條件,B是A的充分條件;

  如果A?B,則A,B互為充分必要條件.解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類(lèi)問(wèn)題時(shí)一定要根據(jù)充分條件和必要條件的概念作出準(zhǔn)確的判斷.

  易錯(cuò)點(diǎn)5:“或”“且”“非”理解不準(zhǔn)致誤

  命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);

  命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);

  綈p真?p假,綈p假?p真(概括為一真一假).求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補(bǔ)”對(duì)應(yīng)起來(lái)進(jìn)行理解,通過(guò)集合的運(yùn)算求解.

  易錯(cuò)點(diǎn)6:函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤

  在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問(wèn)題、尋找解決問(wèn)題的方法.對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可.

  易錯(cuò)點(diǎn)7:判斷函數(shù)的奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù).

  易錯(cuò)點(diǎn)8:函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn).函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)問(wèn)題時(shí)要注意這個(gè)問(wèn)題.

  易錯(cuò)點(diǎn)9:導(dǎo)數(shù)的幾何意義不明致誤

  函數(shù)在一點(diǎn)處的導(dǎo)數(shù)值是函數(shù)圖像在該點(diǎn)處的切線的斜率.但在許多問(wèn)題中,往往是要解決過(guò)函數(shù)圖像外的一點(diǎn)向函數(shù)圖像上引切線的問(wèn)題,解決這類(lèi)問(wèn)題的基本思想是設(shè)出切點(diǎn)坐標(biāo),根據(jù)導(dǎo)數(shù)的幾何意義寫(xiě)出切線方程.然后根據(jù)題目中給出的其他條件列方程(組)求解.因此解題中要分清是“在某點(diǎn)處的切線”,還是“過(guò)某點(diǎn)的切線”.

  易錯(cuò)點(diǎn)10:導(dǎo)數(shù)與極值關(guān)系不清致誤

  f(x0)=0只是可導(dǎo)函數(shù)f(x)在x0處取得極值的必要條件,即必須有這個(gè)條件,但只有這個(gè)條件還不夠,還要考慮是否滿足f′(x)在x0兩側(cè)異號(hào).另外,已知極值點(diǎn)求參數(shù)時(shí)要進(jìn)行檢驗(yàn).

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 11

  立體幾何初步

  柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  棱柱

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

  分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  棱臺(tái)

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

  表示:用各頂點(diǎn)字母,如五棱臺(tái)

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  圓柱

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

  圓錐

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

  圓臺(tái)

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

  球體

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a—邊長(zhǎng),S=6a2,V=a3

  4、長(zhǎng)方體a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc

  5、棱柱S—h—高V=Sh

  6、棱錐S—h—高V=Sh/3

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6

  9、圓柱r—底半徑,h—高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

  11、r—底半徑h—高V=πr^2h/3

  12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6

  14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球臺(tái)r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 12

  冪函數(shù)的性質(zhì):

  對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

  排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

  排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

  排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

  總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

  如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

  在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

  在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

  而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

  由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

 。1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

  (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

  (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

  (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

  (5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。

 。6)顯然冪函數(shù)無(wú)界。

  解題方法:換元法

  解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái)。或者變?yōu)槭煜さ男问,把?fù)雜的計(jì)算和推證簡(jiǎn)化。

  它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問(wèn)題中有廣泛的應(yīng)用。

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 13

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a—邊長(zhǎng),S=6a2,V=a3

  4、長(zhǎng)方體a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc

  5、棱柱S—h—高V=Sh

  6、棱錐S—h—高V=Sh/3

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6

  9、圓柱r—底半徑,h—高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

  11、r—底半徑h—高V=πr^2h/3

  12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6

  14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球臺(tái)r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

  練習(xí)題:

  1、正四棱錐P—ABCD的側(cè)棱長(zhǎng)和底面邊長(zhǎng)都等于,有兩個(gè)正四面體的棱長(zhǎng)也都等于。當(dāng)這兩個(gè)正四面體各有一個(gè)面與正四棱錐的側(cè)面PAD,側(cè)面PBC完全重合時(shí),得到一個(gè)新的多面體,該多面體是()

  (A)五面體

 。˙)七面體

 。–)九面體

  (D)十一面體

  2、正四面體的四個(gè)頂點(diǎn)都在一個(gè)球面上,且正四面體的高為4,則球的表面積為()

 。ˋ)9

 。˙)18

 。–)36

 。―)64

  3、下列說(shuō)法正確的是()

  A、棱柱的側(cè)面可以是三角形

  B、正方體和長(zhǎng)方體都是特殊的四棱柱

  C、所有的幾何體的表面都能展成平面圖形

  D、棱柱的各條棱都相等

  高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納 14

  高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

  1、函數(shù):設(shè)A、B為非空集合,如果按照某個(gè)特定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),寫(xiě)作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對(duì)應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。

  2、函數(shù)定義域的解題思路:

 、湃魓處于分母位置,則分母x不能為0。

 、婆即畏礁谋婚_(kāi)方數(shù)不小于0。

 、菍(duì)數(shù)式的真數(shù)必須大于0。

  ⑷指數(shù)對(duì)數(shù)式的底,不得為1,且必須大于0。

 、芍笖(shù)為0時(shí),底數(shù)不得為0。

 、嗜绻瘮(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的,那么,它的定義域是各個(gè)部分都有意義的x值組成的集合。

 、藢(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義。

  3、相同函數(shù)

  ⑴表達(dá)式相同:與表示自變量和函數(shù)值的字母無(wú)關(guān)。

 、贫x域一致,對(duì)應(yīng)法則一致。

  4、函數(shù)值域的求法

 、庞^察法:適用于初等函數(shù)及一些簡(jiǎn)單的由初等函數(shù)通過(guò)四則運(yùn)算得到的函數(shù)。

 、茍D像法:適用于易于畫(huà)出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。

 、桥浞椒ǎ褐饕糜诙魏瘮(shù),配方成y=(x-a)2+b的形式。

 、却鷵Q法:主要用于由已知值域的函數(shù)推測(cè)未知函數(shù)的值域。

  5、函數(shù)圖像的變換

 、牌揭谱儞Q:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。

 、粕炜s變換:在x前加上系數(shù)。

 、菍(duì)稱變換:高中階段不作要求。

  6、映射:設(shè)A、B是兩個(gè)非空集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從集合A到集合B的映射。

  ⑴集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的。

 、萍螦中的不同元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè)。

  ⑶不要求集合B中的每一個(gè)元素在集合A中都有原象。

  7、分段函數(shù)

 、旁诙x域的不同部分上有不同的解析式表達(dá)式。

 、聘鞑糠肿宰兞亢秃瘮(shù)值的取值范圍不同。

  ⑶分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集。

  8、復(fù)合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復(fù)合函數(shù)。

  高一數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)

  空間兩條直線只有三種位置關(guān)系:平行、相交、異面

  1、按是否共面可分為兩類(lèi):

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)

  esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)

  esp.空間向量法

  2、若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面

  高一數(shù)學(xué)直線和平面的位置關(guān)系

  直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

 、僦本在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

 、谥本和平面相交——有且只有一個(gè)公共點(diǎn)

  直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

  空間向量法(找平面的法向量)

  規(guī)定:

  a、直線與平面垂直時(shí),所成的角為直角,

  b、直線與平面平行或在平面內(nèi),所成的角為0°角

  由此得直線和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

  三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

  直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒(méi)有公共點(diǎn)

  直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

  直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面

【高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納】相關(guān)文章:

高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納01-09

高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納03-03

最新數(shù)學(xué)知識(shí)點(diǎn)的歸納07-22

高一數(shù)學(xué)集合知識(shí)點(diǎn)歸納02-18

高一數(shù)學(xué)必修二知識(shí)點(diǎn)歸納08-05

高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納08-13

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納10-08

高一數(shù)學(xué)公式知識(shí)點(diǎn)歸納12-07

高一數(shù)學(xué)知識(shí)點(diǎn)整理歸納02-16