八年級(jí)上冊(cè)數(shù)學(xué)重要的知識(shí)
八年級(jí)的學(xué)生面臨著大量的數(shù)學(xué)知識(shí),想學(xué)好并沒有那么簡(jiǎn)單。不僅上課要聽懂老師的講課,課后要經(jīng)常復(fù)習(xí)知識(shí),熟練做題。下面是百分網(wǎng)小編為大家整理的八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)總結(jié),希望對(duì)大家有用!
八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)
全等三角形
1.基本定義:
、湃刃危耗軌蛲耆睾系膬蓚(gè)圖形叫做全等形.
⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形.
、菍(duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn).
⑷對(duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊.
、蓪(duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角.
2.基本性質(zhì):
、湃切蔚姆(wěn)定性:三角形三邊的長(zhǎng)度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.
⑵全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.
3.全等三角形的判定定理:
⑴邊邊邊():三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
、七吔沁():兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.
⑶角邊角():兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
、冉墙沁():兩角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
⑸斜邊、直角邊():斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.
4.角平分線:
⑴畫法:
、菩再|(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等.
⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上.
5.證明的基本方法:
、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對(duì)頂
角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)
、聘鶕(jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證.
⑶經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.
八年級(jí)上冊(cè)數(shù)學(xué)必備知識(shí)
軸對(duì)稱
1.基本概念:
⑴軸對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相
重合,這個(gè)圖形就叫做軸對(duì)稱圖形.
⑵兩個(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一
個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱.
、蔷段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這
條線段的垂直平分線.
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫
做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做
底角.
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.
2.基本性質(zhì):
、艑(duì)稱的性質(zhì):
、俨还苁禽S對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一
對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線.
、趯(duì)稱的圖形都全等.
⑵線段垂直平分線的性質(zhì):
、倬段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等.
、谂c一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.
⑶關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)
八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)要點(diǎn)
一、軸對(duì)稱圖形
1. 把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。這時(shí)我們也說這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。
2. 把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說這兩個(gè)圖關(guān)于這條直線對(duì)稱。這條直線叫做對(duì)稱軸。折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)
3、軸對(duì)稱圖形和軸對(duì)稱的區(qū)別與聯(lián)系
4.軸對(duì)稱的性質(zhì)
、訇P(guān)于某直線對(duì)稱的兩個(gè)圖形是全等形。
、谌绻麅蓚(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
、圯S對(duì)稱圖形的`對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
、苋绻麅蓚(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
二、線段的垂直平分線
1. 經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等
3.與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上
三、用坐標(biāo)表示軸對(duì)稱小結(jié):
在平面直角坐標(biāo)系中,關(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等.
2.三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等
四、(等腰三角形)知識(shí)點(diǎn)回顧
1.等腰三角形的性質(zhì)
、.等腰三角形的兩個(gè)底角相等。(等邊對(duì)等角)
、.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:
【八年級(jí)上冊(cè)數(shù)學(xué)重要的知識(shí)】相關(guān)文章:
八年級(jí)上冊(cè)重要的數(shù)學(xué)知識(shí)點(diǎn)11-02
初一數(shù)學(xué)上冊(cè)重要知識(shí)點(diǎn)06-24
八年級(jí)下冊(cè)數(shù)學(xué)重要的知識(shí)11-02
八年級(jí)上冊(cè)物理重要知識(shí)點(diǎn)08-01
人教版八年級(jí)上冊(cè)重要政治知識(shí)11-03
八年級(jí)上冊(cè)重要的政治知識(shí)點(diǎn)11-08
八年級(jí)物理上冊(cè)重要知識(shí)點(diǎn)01-17