初三數(shù)學(xué)中考備考技巧
導(dǎo)語(yǔ):在復(fù)習(xí)過(guò)程中夯實(shí)數(shù)學(xué)基礎(chǔ),要注意知識(shí)的不斷深化,注意知識(shí)之間的內(nèi)在聯(lián)系和關(guān)系,將新知識(shí)及時(shí)納入已有知識(shí)體系,逐步形成和擴(kuò)充知識(shí)結(jié)構(gòu)系統(tǒng),這樣在解題時(shí),就能由題目所提供的信息,從記憶系統(tǒng)中檢索出有關(guān)信息,選出最佳組合信息,尋找解題途徑、優(yōu)化解題過(guò)程。下面小編整理了初三數(shù)學(xué)中考備考技巧,僅供參考!
一、狠抓“雙基”訓(xùn)練
“雙基”即基礎(chǔ)知識(shí)與基本技能。基礎(chǔ)知識(shí)是指數(shù)學(xué)概念、定理、法則、公式以及各種知識(shí)之間的內(nèi)在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動(dòng)作,初中數(shù)學(xué)基本技能包括運(yùn)算技能、畫(huà)圖技能、運(yùn)用數(shù)字語(yǔ)言的技能、推理論證的技能等。只有扎實(shí)地掌握“雙基”,才能靈活應(yīng)用、深入探索,不斷創(chuàng)新。
二、注意前后聯(lián)系
初三數(shù)學(xué)是以前兩年的學(xué)習(xí)內(nèi)容為基礎(chǔ)的,可以用來(lái)復(fù)習(xí)、鞏固相關(guān)的內(nèi)容,同時(shí)新知識(shí)的學(xué)習(xí)常常由舊知識(shí)引入或要用到前面所學(xué)過(guò)的內(nèi)容,甚至是已有知識(shí)的綜合、提高與延續(xù)。因此在學(xué)習(xí)中,要注意前后知識(shí)的聯(lián)系,以便達(dá)到鞏固與提高的目的。
三、重視歸納梳理
初三數(shù)學(xué)各章內(nèi)容豐富、綜合性強(qiáng),學(xué)習(xí)過(guò)程中要及時(shí)進(jìn)行歸納梳理,以便于對(duì)知識(shí)深入理解,系統(tǒng)掌握,靈活運(yùn)用。要學(xué)會(huì)從橫向、縱向兩方面歸納梳理知識(shí)?v向主要是按照知識(shí)的來(lái)龍去脈進(jìn)行總結(jié)歸納,如學(xué)完函數(shù),可按正比例函數(shù),一次函數(shù)、二次函數(shù)、反比例函數(shù)來(lái)歸納知識(shí)。橫向是平行的、相關(guān)的知識(shí)的整合,通過(guò)對(duì)比指出其區(qū)別與聯(lián)系,如學(xué)完二次函數(shù)之后,可把二次函數(shù)y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)之間的聯(lián)系進(jìn)行歸納,這樣既可以鞏固新、舊知識(shí),更可以提高綜合運(yùn)用知識(shí)的能力,收到事半功倍的效果。
四、掌握基本模型,找出本質(zhì)屬性
中學(xué)的“數(shù)學(xué)模型”常常是指反映數(shù)學(xué)知識(shí)規(guī)律的結(jié)論和基本幾何圖形。初中代數(shù)中,運(yùn)算法則、性質(zhì)、公式、方程、函數(shù)解析式等均是代數(shù)的模型;平面幾何中,各類(lèi)知識(shí)中的基本圖形均是幾何模型。通過(guò)對(duì)這些基本模型的研究,能夠更好地掌握知識(shí)的本質(zhì)屬性,溝通知識(shí)間的聯(lián)系。
重要的公式、定理是知識(shí)系統(tǒng)的主干,我們不僅要知其內(nèi)容,還應(yīng)該搞清其來(lái)龍去脈,理解其本質(zhì)。
如一元二次方程的求根公式的'推導(dǎo),不僅體現(xiàn)方法,而且由此公式可得出兩根與系數(shù)的關(guān)系,還可類(lèi)似地推出二次函數(shù)的頂點(diǎn)坐標(biāo)公式,所以一定要掌握推導(dǎo)過(guò)程。
五、掌握數(shù)學(xué)思想方法
數(shù)學(xué)思想方法是解決數(shù)學(xué)問(wèn)題的靈魂,是形成數(shù)學(xué)能力、數(shù)學(xué)意識(shí)的橋梁,是靈活運(yùn)用數(shù)學(xué)知識(shí)、技能的關(guān)鍵。在解數(shù)學(xué)綜合題時(shí),尤其需要用數(shù)學(xué)思想方法來(lái)統(tǒng)帥,去探求解題思路,優(yōu)化解題過(guò)程,驗(yàn)證所得結(jié)論。
在初三這一年的數(shù)學(xué)學(xué)習(xí)中,常用的數(shù)學(xué)方法有:消元法、換元法、配方法、待定系數(shù)法、反證法、作圖法等;常用的數(shù)學(xué)思想有:轉(zhuǎn)化思想,函數(shù)與方程思想、數(shù)形結(jié)合思想、分類(lèi)討論思想。
六、提高數(shù)學(xué)能力
數(shù)學(xué)能力的提高,是我們數(shù)學(xué)學(xué)習(xí)的主要目的,能力培養(yǎng)是目前中學(xué)數(shù)學(xué)教育中倍受關(guān)注的問(wèn)題,因此能力評(píng)價(jià)也就成為數(shù)學(xué)考查中的熱點(diǎn)。
。1)熟練準(zhǔn)確的計(jì)算能力。
。2)嚴(yán)密有序的分析、推理能力。提高這一能力,應(yīng)從以下幾個(gè)方面著手:
。á。┱J(rèn)清問(wèn)題中的條件、結(jié)論,特別要注意隱含條件;
。áⅲ┠苷_地畫(huà)出圖形;
。á#┱撟C要做到步步有依據(jù);
。áぃ⿲W(xué)會(huì)執(zhí)果索因的分析方法。
。3)直觀形象的數(shù)形結(jié)合能力。
。4)快速高效的閱讀能力。
。5)觀察、發(fā)現(xiàn)、創(chuàng)新的探索能力。
七、注重實(shí)際應(yīng)用
解應(yīng)用問(wèn)題的關(guān)鍵是轉(zhuǎn)化,即將實(shí)際應(yīng)用問(wèn)題轉(zhuǎn)化成數(shù)學(xué)模型,再利用數(shù)學(xué)知識(shí)去解決問(wèn)題,從而不斷提高自己用數(shù)學(xué)的意識(shí)解決實(shí)際問(wèn)題的能力。
最后要強(qiáng)調(diào)的是:有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴(lài)模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)習(xí)數(shù)學(xué)的重要方式。我們應(yīng)該在這樣的學(xué)習(xí)過(guò)程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
【初三數(shù)學(xué)中考備考技巧】相關(guān)文章:
中考數(shù)學(xué)備考技巧12-18
中考數(shù)學(xué)備考的實(shí)用技巧03-31
初三數(shù)學(xué)中考備考建議12-03
初三數(shù)學(xué)中考備考方法12-03