欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

八年級數(shù)學說課稿

時間:2025-05-02 06:18:10 說課稿 我要投稿

八年級數(shù)學說課稿3篇

  作為一位優(yōu)秀的人民教師,就不得不需要編寫說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。說課稿應該怎么寫呢?以下是小編為大家整理的八年級數(shù)學說課稿3篇,僅供參考,大家一起來看看吧。

八年級數(shù)學說課稿3篇

八年級數(shù)學說課稿 篇1

  各位領導、老師們:

  大家好!

  今天我說課的內(nèi)容是義務教育課程標準實驗教科書《數(shù)學》八年級上冊第十二章12.3.1等腰三角形性質(zhì)第一課時。下面,我從教材分析、教法分析、學法分析、教學過程、教學反思五個方面來匯報我對這節(jié)課的教學設想。

  一、教材分析

  1、教材的地位與作用:

  本節(jié)課內(nèi)容是在學生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎上進行學習的。使學生學會分析、學會證明,在培養(yǎng)學生的思維能力和推理能力等方面有重要的作用。通過等腰三角形的性質(zhì)反映在一個三角形中“等邊對等角”的邊角關系,并且是對軸對稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學思想方法是今后研究數(shù)學的基本思想方法。等腰三角形的性質(zhì)也是論證兩個角相等、兩條線段相等、兩條直線垂直的重要依據(jù),因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。

  2、教學目標:

  知識技能:理解掌握等腰三角形的性質(zhì);運用等腰三角形的性質(zhì)進行證明和計算。

  過程方法:通過實踐、觀察、證明等腰三角形的性質(zhì),發(fā)展學生合情推理能力和演繹推理能力。

  解決問題:通過觀察等腰三角形的對稱性,及運用等腰三角形的性質(zhì)解決有關的問題,提高學生觀察、分析、歸納、運用知識解決問題的能力,發(fā)展應用意識。

  情感態(tài)度:通過引導學生對圖形的觀察、發(fā)現(xiàn),激發(fā)學生的好奇心和求知欲,并在運用數(shù)學知識解答問題的活動中獲取成功的體驗,建立學習的自信心。

 。ǜ鶕(jù)教材內(nèi)容的地位與作用及教學目標,因此我將把本節(jié)課的重點確定為:等腰三角形的性質(zhì)的探究和應用。由于對文字語言敘述的幾何命題的證明要求嚴格且步驟繁瑣,此時八年級學生還沒有深刻的理解和熟練的掌握,因此我將把本節(jié)課的難點定為:等腰三角形性質(zhì)的推理證明。)

  3、教學重點與難點:

  重點:等腰三角形的性質(zhì)的探索和應用。

  難點:等腰三角形性質(zhì)的推理證明。

  二、教法設計:

  教法設想:我采用探索發(fā)現(xiàn)法和啟發(fā)式教學法完成本節(jié)的教學,在教學中通過創(chuàng)設情景,設計問題,引導學生自主探索,合作交流,組織學生動手操作,觀察現(xiàn)象,提出猜想,推理論證等。有效地啟發(fā)學生的思考,使學生真正成為學習的主體。

  三、學法設計:

  在學生學習的過程中,我將從兩個方面指導學生學習,一方面老師大膽放手,讓學生去自主探究等腰三角形的性質(zhì),另一方面,在對等腰三角形性質(zhì)的證明過程中,老師要巧妙引導,分散難點。這樣做既有利于活躍學生的思維,又能幫助他們探本求源,這樣也體現(xiàn)了以“教師為主導,學生為主體”的新課改背景下的教學原則。

  四、教學過程:

  根據(jù)制定的教學目標,圍繞重點,突破難點,我將從以下七個方面設計我的教學過程:

  1、創(chuàng)設情景:

  首先向同學們出示精美的建筑物圖片,并提出問題串:(1)什么是軸對稱圖形?這些圖片中有軸對稱圖形嗎? (2)里面有等腰三角形嗎?然后向?qū)W生介紹等腰三角形的定義以及邊角等相關的概念,由于學生小學就已經(jīng)接觸過,所以學生很容易理解。再提出第三個問題:(3)a.等腰三角形是軸對稱圖形嗎?b.等腰三角形具備哪些性質(zhì)呢?引出本節(jié)課的課題-我們這節(jié)課來探究等腰三角形的性質(zhì)。--板書課題。

  2、動手操作,大膽猜想:

 、倌贸稣n下制作的等腰三角形的紙片,它是軸對稱圖形嗎?對稱軸是誰?用你手中的紙片說明你的看法?②等腰三角形沿對稱軸折疊后,你能得到哪些結論?(看誰得到的結論多)

 、鄯纸M討論。(看哪一組氣氛最活躍,結論又對又多.)

  然后小組代表發(fā)言,交流討論結果。

  ④歸納:你能猜想得到等腰三角形具有什么性質(zhì)?你能用文字語言歸納一下嗎?

 。ń處熞龑W生進行總結歸納得出性質(zhì)1,2)

  性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

  性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡稱“三線合一”)

 。ㄔO計意圖:由學生自己動手折紙活動,根據(jù)等腰三角形軸對稱性,大膽猜測等腰三角形的性質(zhì),培養(yǎng)學生的觀察分析、概括總結能力。也發(fā)展了學生的幾何直觀。教師在學生猜想的基礎上,引導學生觀察、完善、歸納出性質(zhì)1和性質(zhì)2。培養(yǎng)了學生進行合情推理的能力。)

  3、證明猜想,形成定理:

  你能證明等腰三角形的性質(zhì)嗎?

  對于這種幾何命題的證明需要三大步驟:分析題設結論,畫出圖形寫出已知和求證,最后進行推理證明。這對于八年級學段的學生難度較大,為了突破難點,我決定設計以下三個階梯問題:

 。1)找出“性質(zhì)1”的題設和結論,畫出的圖形,寫出已知和求證。

  (2)證明角和角相等有哪些方法?(學生可能會想到平行線的性質(zhì),全等三角形的性質(zhì))

 。3)通過折疊等腰三角形紙片,你認為本題用什么方法證明∠B=∠C,寫出證明過程。

  問題1的設計使得學生順利地將文字語言轉化為符號語言,幫助學生順利地寫出已知和求證;

  問題2提供給學生了解題思路,引導學生用舊的知識解決新的問題,體現(xiàn)了數(shù)學的'轉化思想。找到新知識的生長點,就是三角形的全等。

  問題3的設計目的:因為輔助線的添加是本題中的又一難點,因此讓學生對折等腰三角形紙片,使兩腰重合,使學生在形成感性認識的同時,意識到要證明∠B=∠C,關鍵是將∠B和∠C放在兩三角形中去,構造全等三角形,老師再及時設問:你認為可以通過什么方法可以將∠B和∠C放在兩個三角形中去呢?再次讓學生思考,由于對知識的發(fā)生,發(fā)展有了充分的了解,學生探討以后可能會得出以下三種方法:

 。1)作頂角∠BAC的平分線,

  (2)作底邊BC的中線,

 。3)作底邊BC的高。以作頂角平分線為例,讓一生板演,其他學生在練習本上寫出完整的證明過程。以達到規(guī)范學生的解題步驟的目的。其他兩種證法,讓學生課下證明。這樣,學生就證明了性質(zhì)1,同時由于△BAD≌△CAD,也很容易得出等腰三角形的頂角平分線平分底邊,并垂直于底邊。用類似的方法還可以證明等腰三角形底邊的中線平分頂角且垂直于底邊,等腰三角形底邊上的高平分頂角且平分底邊,這也就證明了性質(zhì)2。

 。ㄔO計意圖:教師精心設計問題串引導學生通過動手,觀察,猜想,歸納,猜測出等腰三角形的性質(zhì),發(fā)展了學生的合情推理能力,同時也讓學生明確,結論的正確性需要通過演繹推理加以證明。這樣把對性質(zhì)的證明作為探索活動的自然延續(xù)和必要發(fā)展,使學生感受到合情推理與演繹推理是相輔相成的兩種形式,同時感受到探索證明同一個問題的不同思路和方法,發(fā)展了學生思維的廣闊性和靈活性。)

 。4)你能用符號語言表示性質(zhì)1和性質(zhì)2嗎?

  (設計意圖:把文字語言轉換為符號語言,讓學生建立符號意識,這有助于學生理解符號的使用是數(shù)學表達和進行數(shù)學思考的重要形式!

  4、性質(zhì)的應用:

  例一:在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______

  變式練習:

  1、在等腰中,∠A=50°,則 ∠B=___,∠C=___

  2、在等腰中,∠A=100°,則∠B=___,∠C=___

  設計意圖:此例題的重點是運用等腰三角形“等邊對等角”這一性質(zhì)和三角形的內(nèi)角和,突出頂角和底角的關系,如

  例一,學生就比較容易得出正確結果,對變式練習(1)、(2)學生得出正確的結果就有困難,容易漏解,讓學生把變式題與例一進行比較兩題的條件,讓學生認識等腰三角形在沒有明確頂角和底角時,應分類討論:變式1(如圖)①當∠A=50°為頂角時,則∠B=65°,∠C=65°。②當∠A=50°為底角時,則∠B=50°,∠C=80°;或∠B=80°,∠C=50°。變式2①當∠A=100°為頂角時,則∠B=40°,∠C=40°。②當∠A=100°為底角時,則△ABC不存在。由此得出,等腰三角形中已知一個角可以求出另兩個角(頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°)。

  例二:在等腰△ABC中,AB=5,AC=6,則△ABC的周長=_______

  變式練習:在等腰△ABC中,AB=5,AC=12,則 △ABC的周長=______

  (設計意圖:此例題的重點是運用等腰三角形的定義,以及等腰三角形腰和底邊的關系,并強調(diào)在沒有明確腰和底邊時,應該分兩種情況討論。如例二,①當AB=5為腰時,則三邊為5,5,6;②當AB=5為底時,則三邊為6,6,5。變式練習①:當AB=5為腰時,三邊為5,5,12;②當AB=5為底時,三邊為12,12,5。此時同學們就會毫不猶豫地得出三角形的周長,這時老師就可以提出質(zhì)疑,讓同學們之間討論(學生容易忽視三角形三邊關系,看能否構成一個三角形)。

  例三、如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

 。ɡ3是課本例題,有一定難度,讓學生展開討論,老師參與討論,認真聽取學生分析,引導學生找出角之間的關系,利用方程的思想解決問題,并書寫出解答過程。本題運用了等腰三角形性質(zhì)1,并體現(xiàn)了利用方程解決幾何問題的思想。)

  例四:

  在△ABC中,點D在BC上,給出4個條件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2個條件作題設,另外2個條件作結論,你能寫出一個正確的命題嗎?看誰寫得多。(分組討論搶答)

  5、鞏固提高

 。1)等腰三角形一腰上的高與另一腰的夾角為30°,則這個等腰三角形頂角為度。

 。2)如圖,在△ABC中,AB=AC,D是BC邊上的中點,∠B=30。求∠1和∠ADC的度數(shù)。

 。3)課本本章數(shù)學活動三“等腰三角形中相等的線段”

  設計意圖:

  (1)題運用等腰三角形的性質(zhì)1及等腰三角形一腰上的高的畫法,由于題目沒有圖,要用到分類討論的數(shù)學思想,學生能正確畫出銳角和鈍角三角形兩種圖形就容易得出結果,也滲透了一題多解。

 。2)題同時運用了等腰三角形的性質(zhì)1,性質(zhì)2,還有三角形的內(nèi)角和這三個知識點,培養(yǎng)學生對于知識的靈活運用,“討論”是本章的數(shù)學活動3“等腰三角形中相等的線段”。與等腰性質(zhì)的證明思路類似,先通過等腰三角形的對稱性猜想距離是相等的,然后通過做輔助線構造全等三角形來進行嚴密的推理。更加說明了合情推理和演繹推理是相輔相成的。

  6、課堂小結:不僅僅說你收獲了什么,而是讓學生從知識上,思想方法上,以及輔助線的做法上等方面具體總結一下。然后教師結合學生的回答完善本節(jié)知識結構。學生對于自己的疑惑提出小組內(nèi)交流,還沒解決則全班交流。

  7、布置作業(yè):

  P55練習1、2、3題

  P56習題1、4、6,(選做7,8題)

八年級數(shù)學說課稿 篇2

  一、教材分析:

  本節(jié)的教學內(nèi)容是第13章第2節(jié)的第5小節(jié),在本節(jié)課之前,學生已經(jīng)進行了“邊角邊”、“角邊角”、“角角邊”的學習探索。三角形全等的證明既是幾何推理證明的起始部分,對學生的后續(xù)學習起著鋪墊作用,是后面等腰三角形、四邊形與特殊四邊形的學習基礎,同時也是培養(yǎng)提高學生邏輯思維能力的良好素材,對學生的演繹推理能力鍛煉有非常重要的作用。

  二、學生情況分析

  在本節(jié)學習之前,學生已經(jīng)經(jīng)歷了一周的推理證明的訓練,所以學生的證明能力已經(jīng)有所提升,解題思路也有所凝練,相對而言儲備了一定的方法和技巧,但是對于輔助線的引用練習的不是很多,因此學生還沒有什么經(jīng)驗。

  三、教學目標、重點和難點

  (一)教學目標:

  1、讓學生通過實踐操作探索出“邊邊邊”的基本事實,并掌握其推理格式。

  2、能夠應用“邊邊邊”的基本事實解決實際問題。

 。ǘ┙虒W重點:

  掌握“邊邊邊”的基本事實。

 。ㄈ┙虒W難點:

  靈活運用“邊邊邊”解決問題。

  四、教法學法

 。ㄒ唬┙谭

  在本節(jié)課的課堂教學中我采用講授、討論式、演示、互動式、體驗式、操作式、談話、練習等教學方法,凸顯學生的主體地位和教師的主導地位,突出課標的四性<實踐性、趣味性、自主性、開放性>,適時啟發(fā)點撥引導,適當采用多媒體教學手段,幫助學生更好地掌握知識、熟練技能、培養(yǎng)學生的能力,

 。ǘ⿲W法

  我采用自主、探究、合作的學習方法,讓學生在動手操作、動腦思考、交流討論的'過程中學習本節(jié)課的知識、掌握方法、提高技能、形成能力;達到體驗中感悟情感、態(tài)度、價值觀;活動中歸納知識;參與中培養(yǎng)能力;合作中學會學習。

  五、教學過程

  復習引入:復習已經(jīng)學過的全等三角形的三種判定方法,為新知做好鋪墊;然后引入新課,激發(fā)學生的學習興趣。

  明確目標:簡潔明了的學習目標使學生在開始學習之初就能夠明確目標,明確努力的方向,做到有的放矢。

  定向?qū)W習:在整個自學過程中,我注意用語言引導學生,使其把握住主旨目標,充分利用教材和導學提綱完成自學。由于上一階段的學習和練習,學生儲備了一定的經(jīng)驗,所以要自主完成例1應該是不成問題,而且基礎訓練的內(nèi)容學生也能比較容易完成。

  精講點撥:在“邊邊邊”的簡單應用的基礎上,再稍加拓展。

  鞏固訓練:在此環(huán)節(jié)中我著重加入了對輔助線的引導滲透,對學生的思維能力進行拓展、提升,以確保讓尖子生吃的飽。

  六、課后反思

  在教學過程中,我注重調(diào)整了自己的“角色”,因為學生已經(jīng)結合教材進行了自學,所以在課堂上,更應實現(xiàn)學生的自主,故課堂即是學生的演練場,教師就針對學生出現(xiàn)的問題進行點撥、指導,對于共性問題重點提示,引起全體同學重視,從而加深印象。正所謂問題即課題,有疑、有錯才有講解!本節(jié)課的教學,按照本人的設計非常順暢的進行下去了,學生對于我在三角形全等這一部分知識的處理方式,都能夠適應、接受,這也反映出這樣的教學方式對于學生新知識的接受還是比較適合的。教無定法,不同的知識、不同的學生,可能要采用不同教學方式,需要我們因課因人靈活選擇。

八年級數(shù)學說課稿 篇3

  一、說教材:

  本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運算,整數(shù)指數(shù)冪的概念及運算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。

  全章共包括三節(jié):

  16.1 分式

  16.2 分式的運算

  16.3 分式方程

  其中,16.1 節(jié)引進分式的概念,討論分式的基本性質(zhì)及約分、通分等分式變形,是全章的理論基礎部分。16.2節(jié)討論分式的四則運算法則,這是全章的一個重點內(nèi)容,分式的四則混合運算也是本章教學中的一個難點,克服這一難點的關鍵是通過必要的練習掌握分式的各種運算法則及運算順序。在這一節(jié)中對指數(shù)概念的限制從正整數(shù)擴大到全體整數(shù),這給運算帶來便利。16.3節(jié)討論分式方程的概念,主要涉及可以化為一元一次方程的分式方程。解方程中要應用分式的基本性質(zhì),并且出現(xiàn)了必須檢驗(驗根)的環(huán)節(jié),這是不同于解以前學習的方程的新問題。根據(jù)實際問題列出分式方程,是本章教學中的另一個難點,克服它的關鍵是提高分析問題中數(shù)量關系的能力。

  分式是不同于整式的另一類有理式,是代數(shù)式中重要的基本概念;相應地,分式方程是一類有理方程,解分式方程的過程比解整式方程更復雜些。然而,分式或分式方程更適合作為某些類型的問題的數(shù)學模型,它們具有整式或整式方程不可替代的特殊作用。

  借助對分數(shù)的認識學習分式的內(nèi)容,是一種類比的認識方法,這在本章學習中經(jīng)常使用。解分式方程時,化歸思想很有用,分式方程一般要先化為整式方程再求解,并且要注意檢驗是必不可少的步驟。

  二、說教學目標:

  1.進一步掌握分式的有關概念,相關性質(zhì)及運算法則,分式方程的解法。

  2.會利用分式方程解決實際問題,培養(yǎng)分析問題,解決問題的能力和應用意識。

  三、說教學重難點

  重點:

  1、能熟練的進行分式的.約分、通分和分式的運算。

  2、會解可化為一元一次方程的分式方程,了解產(chǎn)生增根的原因。

  3、會用分式方程解決實際問題。

  難點:用分式方程解決實際問題。

  四、說教法學法

  閱讀教材,歸納知識點,疑難問題小組合作探究。

  五、說教學過程:

  學生在自主梳理課本內(nèi)容的基礎上,課堂上展示交流以下問題:

  概念部分:

  舉例說明什么是分式、分式方程、分式的約分、通分和最簡分式

  分式:

  分式方程:

  分式的約分:

  分式的通分:

  最簡分式:

  性質(zhì)部分

  (1) 什么是分式的基本性質(zhì)?本章哪些內(nèi)容用到了分式的基本性質(zhì)?

  (2) 整數(shù)指數(shù)冪的運算性質(zhì)有哪些?

  3法則部分

  用自己的語言敘述分式的加法、減法、乘法、除法及乘方的運算法則(各舉一例說明這些法則) 。

  這部分內(nèi)容由每個小組完成。目的是培養(yǎng)學生梳理知識的能力,同時也能更好的掌握本章的基礎知識,學生完全可獨立完成。這些基礎知識也為分式的運算、化簡、解方程奠定基礎的所以學生必須學會這部分內(nèi)容。為此讓學生舉例說明就更有必要了。

  鞏固訓練,提升能力:

  1.在式子,,,,·,中

  整式有 ; 分式有 。

  2.若分式:有意義,則,x ;若分式無意義,則x ;若分式的值為零,則x= 。

  3.解分式方程的基本思想是把分式方程轉化為 方程,其步驟為:

  (1)去分母在方程兩邊都 ,把分式方程轉化為 方程。

  (2)解這個 方程。

  (3)檢驗,檢驗的方法是 。

  4.約分= , 5.將5.62×

  5 、10用小數(shù)表示為( )

  A.0.000 000 00562 B.0.000 000 0562

  C.0.000 000562 D.0.000 000 000562

  6.下列式子從左到右變形一定正確的是( )

  A. B. C. D. =

  7.下列變形正確的是( )

  A.3a= B. C. D.

  8.通分(1) , (2)

  9.(1)計算 (2) 解方程

  10.計算

  11.先化簡:÷。再任選一個適當?shù)膞值代入求值 。 .

  12已知:,試求A、B的值。

  13.已知:求的值.

  14.已知,求的值.

  15.若關于x的分式方程有增根,求m的值.

  16某工程隊承接了3000米的修路任務,在修好600米后,引進了新設備,工作效率是原來的2倍,一共用30天完成了任務,求引進新設備前平均每天修路多少米?

  17.學校要舉行跳遺繩比賽,同學們都積極練習,甲同學跳180個所用時間,乙同學可以跳240個,又知甲每分鐘比乙少跳5個,求每人每分鐘各跳多少個?

  18.探究題:探索規(guī)律:,個位數(shù)字是3;,個位數(shù)字是9;個位數(shù)字是7;,個位數(shù)字是1;,個位數(shù)字是3 ;,個位數(shù)字是9;的個位數(shù)字是 ;的個位數(shù)字是 。

  19.根據(jù)所給方程,聯(lián)系生活實際編寫一道應用題(要求:題目完整,題意清楚,不要求解方程.)

  這部分編寫的目的是運用基礎知識解決實際問題從而達到解決問題的目的,提綱下發(fā)全體學生都做,然后針對檢查情況把典型題寫在黑板上然后由學生講解,教師適時補充。最后19題是開放試題但教師要總結規(guī)律和方法,工程問題怎樣編,行程問題怎樣編,教給學生方法是關鍵。

  六、教學反思:

  自從實行學、教、測教學模式以來學生的能力得到真正的提高。在本章的教學中我主要是采用類比的教學方法,通過類比分數(shù)來學習分式效果非常好。本節(jié)復習課讓學生歸納知識體系真正培養(yǎng)了學生的歸納整理知識的能力。復習課注重習題方法的探究。學生思維能力的培養(yǎng)。類型題的規(guī)律的探究。在本節(jié)課中體現(xiàn)的還可以如果時間允許的話效果還能好一些。值得我們思考的是在今后的備課中還應注意時間的分配和重點問題的處理。同時數(shù)學課上應該多交給學生解題方法、解題技巧、規(guī)律探索、思維能力的訓練等。

【八年級數(shù)學說課稿】相關文章:

精選八年級數(shù)學說課稿四篇08-03

數(shù)學說課稿10-07

《數(shù)學廣角》說課稿06-14

數(shù)學教學說課稿08-10

數(shù)學廣角——集合說課稿09-21

比的應用數(shù)學說課稿07-24

小學數(shù)學說課稿06-24

初中數(shù)學說課稿09-06

關于八年級數(shù)學說課稿四篇08-23