欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

初二

初二數(shù)學(xué)知識點(diǎn)介紹

時間:2021-07-02 12:23:36 初二 我要投稿

初二數(shù)學(xué)知識點(diǎn)介紹

  基本方法

  1、配方法

初二數(shù)學(xué)知識點(diǎn)介紹

  所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個或幾個多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法

  因式分解,就是把一個多項(xiàng)式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

  3、換元法

  換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、判別式法與韋達(dá)定理

  一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。

  7、反證法

  反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

  反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。

  歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

  歸納法

  (一)運(yùn)用公式法:

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

  (二)平方差公式

  1.平方差公式

  (1)式子:a2-b2=(a+b)(a-b)

  (2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。

  (三)因式分解

  1.因式分解時,各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

  2.因式分解,必須進(jìn)行到每一個多項(xiàng)式因式不能再分解為止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。

  把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

  上面兩個公式叫完全平方公式。

  (2)完全平方式的形式和特點(diǎn)

 、夙(xiàng)數(shù):三項(xiàng)

 、谟袃身(xiàng)是兩個數(shù)的的平方和,這兩項(xiàng)的符號相同。

 、塾幸豁(xiàng)是這兩個數(shù)的積的兩倍。

  (3)當(dāng)多項(xiàng)式中有公因式時,應(yīng)該先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個整體就可以了。

  (5)分解因式,必須分解到每一個多項(xiàng)式因式都不能再分解為止。

  (五)分組分解法

  我們看多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

  如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  =(m+n)??(a+b).

  這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個因式正好相同,那么這個多項(xiàng)式就可以用分組分解法來分解因式.

  (六)提公因式法

  1.在運(yùn)用提取公因式法把一個多項(xiàng)式因式分解時,首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式.當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個多項(xiàng)式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個多項(xiàng)式因式看作一個整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符號,直到可確定多項(xiàng)式的公因式.

  8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。

  9、幾何變換法

  在數(shù)學(xué)問題的'研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。

  幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。

  10、客觀性題的解題方法

  選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。

  要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實(shí)例介紹常用方法。

  (1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

  (2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。

  (3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

  (4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

  (5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

  (6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。

  常用數(shù)學(xué)公式

  乘法與因式分解

  a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)

  a3-b3=(a-b(a2+ab+b2)

  三角不等式

  |a+b|≤|a|+|b|

  |a-b|≤|a|+|b|

  |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  -b+√(b2-4ac)/2a

  -b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系

  X1+X2=-b/a

  X1*X2=c/a

  注:韋達(dá)定理

  判別式

  b2-4ac=0注:方程有兩個相等的實(shí)根

  b2-4ac>0注:方程有兩個不等的實(shí)根

  b2-4ac<0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

  某些數(shù)列前n項(xiàng)和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R

  注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2-2accosB

  注:角B是邊a和邊c的夾角

【初二數(shù)學(xué)知識點(diǎn)介紹】相關(guān)文章:

初二數(shù)學(xué)的知識點(diǎn)07-05

初二數(shù)學(xué)的知識點(diǎn)總結(jié)02-05

人教版數(shù)學(xué)初二知識點(diǎn)07-14

初二數(shù)學(xué)知識點(diǎn)07-12

初二數(shù)學(xué)《分式》知識點(diǎn)07-07

初二數(shù)學(xué)實(shí)數(shù)知識點(diǎn)07-11

初二英語知識點(diǎn)介紹08-06

英語知識點(diǎn)初二知識點(diǎn)重點(diǎn)介紹08-04

初二數(shù)學(xué) 圓的知識點(diǎn)匯總08-09