人教版初二數(shù)學(xué)上冊知識(shí)點(diǎn)
在平平淡淡的學(xué)習(xí)中,是不是聽到知識(shí)點(diǎn),就立刻清醒了?知識(shí)點(diǎn)在教育實(shí)踐中,是指對某一個(gè)知識(shí)的泛稱。為了幫助大家掌握重要知識(shí)點(diǎn),以下是小編精心整理的人教版初二數(shù)學(xué)上冊知識(shí)點(diǎn),希望對大家有所幫助。
人教版初二數(shù)學(xué)上冊知識(shí)點(diǎn)1
1、函數(shù)
一般地,在某一變化過程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
2、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
關(guān)系式(解析)法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。
列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
4、由函數(shù)關(guān)系式畫其圖像的一般步驟
列表:列表給出自變量與函數(shù)的一些對應(yīng)值
描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
5、正比例函數(shù)和一次函數(shù)
①正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成 (k,b為常數(shù),k 0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù) 中的b=0時(shí)(即 )(k為常數(shù),k 0),稱y是x的正比例函數(shù)。
、谝淮魏瘮(shù)的圖像:
所有一次函數(shù)的圖像都是一條直線
、垡淮魏瘮(shù)、正比例函數(shù)圖像的主要特征
一次函數(shù) 的圖像是經(jīng)過點(diǎn)(0,b)的直線;
正比例函數(shù) 的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
、苷壤瘮(shù)的性質(zhì)
一般地,正比例函數(shù) 有下列性質(zhì):
當(dāng)k>0時(shí),圖像經(jīng)過第一、三象限,y隨x的.增大而增大
當(dāng)k<0時(shí),圖像經(jīng)過第二、四象限,y隨x的增大而減小
⑤一次函數(shù)的性質(zhì)
一般地,一次函數(shù) 有下列性質(zhì):
當(dāng)k>0時(shí),y隨x的增大而增大
當(dāng)k<0時(shí),y隨x的增大而減小
⑥正比例函數(shù)和一次函數(shù)解析式的確定
確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式 (k 0)中的常數(shù)k。
確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式 (k 0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法.
、咭淮魏瘮(shù)與一元一次方程的關(guān)系
任何一個(gè)一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式. 而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0).當(dāng)函數(shù)值為0時(shí),即kx+b=0就與一元一次方程完全相同.
結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式.所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時(shí),求相應(yīng)的自變量的值.
從圖象上看,這相當(dāng)于已知直線y=kx+b確定它與x軸交點(diǎn)的橫坐標(biāo)值.
人教版初二數(shù)學(xué)上冊知識(shí)點(diǎn)2
一次函數(shù)
(1)正比例函數(shù):一般地,形如y=kx(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);
(2)正比例函數(shù)圖像特征:一些過原點(diǎn)的直線;
(3)圖像性質(zhì):
、佼(dāng)k>0時(shí),函數(shù)y=kx的圖像經(jīng)過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當(dāng)k<0時(shí),函數(shù)y=kx的圖像經(jīng)過第二、四象限,從左向右下降,即隨著x的'增大y反而減小;
(4)求正比例函數(shù)的解析式:已知一個(gè)非原點(diǎn)即可;
(5)畫正比例函數(shù)圖像:經(jīng)過原點(diǎn)和點(diǎn)(1,k);(或另外一個(gè)非原點(diǎn))
(6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k?0)的函數(shù),叫做一次函數(shù);
(7)正比例函數(shù)是一種特殊的一次函數(shù);(因?yàn)楫?dāng)b=0時(shí),y=kx+b即為y=kx)
(8)一次函數(shù)圖像特征:一些直線;
(9)性質(zhì):
、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個(gè)單位長度而得;(當(dāng)b>0,向上平移;當(dāng)b<0,向下平移)
、诋(dāng)k>0時(shí),直線y=kx+b由左至右上升,即y隨著x的增大而增大;
③當(dāng)k<0時(shí),直線y=kx+b由左至右下降,即y隨著x的增大而減小;
、墚(dāng)b>0時(shí),直線y=kx+b與y軸正半軸有交點(diǎn)為(0,b);
、莓(dāng)b<0時(shí),直線y=kx+b與y軸負(fù)半軸有交點(diǎn)為(0,b);
(10)求一次函數(shù)的解析式:即要求k與b的值;
(11)畫一次函數(shù)的圖像:已知兩點(diǎn);
用函數(shù)觀點(diǎn)看方程(組)與不等式
(1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo)的值;
(2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量相應(yīng)的取值范圍;
(3)每個(gè)二元一次方程都對應(yīng)一個(gè)一元一次函數(shù),于是也對應(yīng)一條直線;
(4)一般地,每個(gè)二元一次方程組都對應(yīng)兩個(gè)一次函數(shù),于是也對應(yīng)兩條直線。從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo);
人教版初二數(shù)學(xué)上冊知識(shí)點(diǎn)3
一、實(shí)數(shù)的概念及分類
1、實(shí)數(shù)的分類
一是分類是:正數(shù)、負(fù)數(shù)、0;
另一種分類是:有理數(shù)、無理數(shù)
將兩種分類進(jìn)行組合:負(fù)有理數(shù),負(fù)無理數(shù),0,正有理數(shù),正無理數(shù)
2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,歸納起來有四類:
(1)開方開不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
(4)某些三角函數(shù)值,如sin60o等
二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對值
1、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時(shí)一對數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的'兩個(gè)數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
2、絕對值
在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的.數(shù)是1和-1。零沒有倒數(shù)。
4、數(shù)軸
規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對應(yīng)的,并能靈活運(yùn)用。
人教版初二數(shù)學(xué)上冊知識(shí)點(diǎn)4
1、二元一次方程
、俣淮畏匠
含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程叫做二元一次方程。
、诙淮畏匠痰慕
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解
2、二元一次方程組
①含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
、诙淮畏匠探M的解
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
、鄱淮畏匠探M的.解法
代入(消元)法
加減(消元)法
④一次函數(shù)與二元一次方程(組)的關(guān)系:
一次函數(shù)與二元一次方程的關(guān)系:
直線y=kx+b上任意一點(diǎn)的坐標(biāo)都是它所對應(yīng)的二元一次方程kx- y+b=0的解
一次函數(shù)與二元一次方程組的關(guān)系:
二元一次方程組的解可看作兩個(gè)一次函數(shù)的圖象的交點(diǎn)。
當(dāng)函數(shù)圖象有交點(diǎn)時(shí),說明相應(yīng)的二元一次方程組有解;
當(dāng)函數(shù)圖象(直線)平行即無交點(diǎn)時(shí),說明相應(yīng)的二元一次方程組無解。
人教版初二數(shù)學(xué)上冊知識(shí)點(diǎn)5
軸對稱
1.如果一個(gè)平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2.性質(zhì)
(1)成軸對稱的兩個(gè)圖形全等;
(2)如果兩個(gè)圖形成軸對稱,那么對稱軸是對稱點(diǎn)連線的垂直平分線。
一次函數(shù)
(一)一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時(shí),y=kx+b(k為常數(shù),k≠0),y叫做x的正比例函數(shù)。
(二)函數(shù)三要素
1.定義域:設(shè)x、y是兩個(gè)變量,變量x的變化范圍為D,如果對于每一個(gè)數(shù)x∈D,變量y遵照一定的法則總有確定的數(shù)值與之對應(yīng),則稱y是x的函數(shù),記作y=f(x),x∈D,x稱為自變量,y稱為因變量,數(shù)集D稱為這個(gè)函數(shù)的定義域。
2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個(gè)函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個(gè)對應(yīng)法則下對應(yīng)的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數(shù)f(x)的值域。
3.對應(yīng)法則:一般地說,在函數(shù)記號(hào)y=f(x)中,“f”即表示對應(yīng)法則,等式y(tǒng)=f(x)表明,對于定義域中的任意的x值,在對應(yīng)法則“f”的作用下,即可得到值域中唯一y值。
(三)一次函數(shù)的表示方法
1.解析式法:用含自變量x的式子表示函數(shù)的方法叫做解析式法。
2.列表法:把一系列x的.值對應(yīng)的函數(shù)值y列成一個(gè)表來表示的函數(shù)關(guān)系的方法叫做列表法。
3.圖像法:用圖象來表示函數(shù)關(guān)系的方法叫做圖象法。
(四)一次函數(shù)的性質(zhì)
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數(shù))。
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b)。當(dāng)y=0時(shí),該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)。
3.k為一次函數(shù)y=kx+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與x軸正方向夾角,θ≠90°)。
4.當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時(shí),兩直線垂直。
6.平移時(shí):上加下減在末尾,左加右減在中間。
【初二數(shù)學(xué)上冊知識(shí)點(diǎn)】相關(guān)文章:
初二數(shù)學(xué)上冊知識(shí)點(diǎn)匯總04-02
初二數(shù)學(xué)上冊知識(shí)點(diǎn)合集01-25
初二數(shù)學(xué)上冊知識(shí)點(diǎn)歸納07-26
初二數(shù)學(xué)上冊知識(shí)點(diǎn)匯總07-14
初二數(shù)學(xué)上冊第二單元知識(shí)點(diǎn)07-27
初二上冊數(shù)學(xué)關(guān)于命題的知識(shí)點(diǎn)01-19
初二數(shù)學(xué)上冊期中復(fù)習(xí)知識(shí)點(diǎn)歸納01-19
初二上冊數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-12