初二數(shù)學(xué)知識點總結(jié)歸納
總結(jié)是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規(guī)律性的結(jié)論,它能幫我們理順知識結(jié)構(gòu),突出重點,突破難點,讓我們來為自己寫一份總結(jié)吧。我們該怎么寫總結(jié)呢?以下是小編整理的初二數(shù)學(xué)知識點總結(jié)歸納,歡迎閱讀與收藏。
初二數(shù)學(xué)知識點總結(jié)歸納1
一.知識框架
二.知識概念
1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
3.平行四邊形的判定1.兩組對邊分別相等的四邊形是平行四邊形;2.對角線互相平分的四邊形是平行四邊形; 3.兩組對角分別相等的四邊形是平行四邊形;4.一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
5.直角三角形斜邊上的中線等于斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理:1.有一個角是直角的平行四邊形叫做矩形;2.對角線相等的平行四邊形是矩形;3.有三個角是直角的'四邊形是矩形。
9.菱形的定義:鄰邊相等的平行四邊形。
10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
11.菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形;2.對角線互相垂直的平行四邊形是菱形;3.四條邊相等的四邊形是菱形。
12.S菱形=1/2×ab(a、b為兩條對角線)
13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
14.正方形的性質(zhì):四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
15.正方形判定定理:1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。
16.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
17.直角梯形的定義:有一個角是直角的梯形
18.等腰梯形的定義:兩腰相等的梯形。
19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
初二數(shù)學(xué)知識點總結(jié)歸納2
一.知識框架
二.知識概念
1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計算公式。權(quán)的理解:反映了某個數(shù)據(jù)在整個數(shù)據(jù)中的重要程度。
2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到小)的`順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。
3.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。
4.極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。
5.方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。
初二數(shù)學(xué)知識點總結(jié)歸納3
一.知識框架
二知識概念
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。
2.定理:經(jīng)過證明被確認正確的命題叫做定理。
3.我們把題設(shè)、結(jié)論正好相反的'兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
初二數(shù)學(xué)知識點總結(jié)歸納4
第一章分式
1、分式及其基本性質(zhì)分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變
2、分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质剑偌訙p
3、整數(shù)指數(shù)冪的.加減乘除法
4、分式方程及其解法
第二章反比例函數(shù)
1、反比例函數(shù)的表達式、圖像、性質(zhì)
圖像:雙曲線
表達式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2、反比例函數(shù)在實際問題中的應(yīng)用
第三章勾股定理
1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。
第四章四邊形
1、平行四邊形
性質(zhì):對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質(zhì):矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形性質(zhì):菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差
初二數(shù)學(xué)知識點總結(jié)歸納5
一、平方根
1、平方根的定義:如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根。(也叫做二次方根)
即:若x2=a,則x叫做a的平方根。
2、平方根的性質(zhì):
(1)一個正數(shù)有兩個平方根。它們互為相反數(shù);
(2)零的平方根是零;
(3)負數(shù)沒有平方根。
二、算術(shù)平方根
1、算術(shù)平方根的定義:正數(shù)a的正的平方根,叫做a的算術(shù)平方根。
2、算術(shù)平方根的性質(zhì):
(1)一個正數(shù)的算術(shù)平方根只有一個且為正;
(2)零的算術(shù)平方根是零;
(3)負數(shù)沒有算術(shù)平方根;
(4)算術(shù)平方根的非負性:a≥0。
三、平方根和算術(shù)平方根是記號:平方根—±a(讀作:正負根號a);算術(shù)平方根—a(讀作根號a)
即:“±a”表示a的'平方根,或者表示求a的平方根;“a”表示a的算術(shù)平方根,或者表示求a的算術(shù)平方根。
其中a叫做被開方數(shù)!哓摂(shù)沒有平方根,∴被開方數(shù)a必須為非負數(shù),即:a≥0。
四、開平方:求一個非負數(shù)的平方根的運算,叫做開平方。其實質(zhì)就是:已知指數(shù)和二次冪求底數(shù)的運算。
五、立方根
1、立方根的定義:如果一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根。(也叫做三次方根)
即:若x3=a,則x叫做a的立方根。
2、立方根的性質(zhì):
(1)一個正數(shù)的立方根為正;
(2)一個負數(shù)的立方根為負;(3)零的立方根是零。
3、立方根的記號:a(讀作:三次根號a),a稱為被開方數(shù),“3”稱為根指數(shù)。
a中的被開方數(shù)a的取值范圍是:a為全體實數(shù)。
六、開立方:求一個數(shù)的立方根的運算,叫做開立方。其實質(zhì)就是:已知指數(shù)和三次冪求底數(shù)的運算。
七、注意事項:
1、“±a”、“a”、“a”的實質(zhì)意義:“±a”→問:哪個數(shù)的平方是a;“a”→問:哪個非負數(shù)的平方是a;“a”→問:哪個數(shù)的立方是a。
2、注意a和a中的a的取值范圍的應(yīng)用。
如:若x?3有意義,則x取值范圍是。(∵x-3≥0,∴x≥3)(填:x≥3)
若?x20xx有意義,則x取值范圍是。(填:全體實數(shù)) 3、?a??a。如:∵27??3,?27??3,∴?27??27
4、對于幾個算數(shù)平方根比較大小,被開方數(shù)越大,其算數(shù)平方根的值也越大。 ?7?6?5?2等。23和32怎么比較大小?(你知道嗎?不知道就問!)
5、算數(shù)平方根取值范圍的確定方法:關(guān)鍵:找鄰近的“完全平方數(shù)的算數(shù)平方根”作參照。如:確定7的取值范圍!4<7<,∴2<<3。
6、幾個常見的算數(shù)平方根的值:2?1.414,3?1.732,5?2.236,?2.449,?2.646。
八、補充的二次根式的部分內(nèi)容1、二次根式的定義:形如a(a≥0)的式子,叫做二次根式。
2、二次根式的性質(zhì):(1)ab?a?b(a≥0,b≥0);
(2)≥0,b>0);
(3) (a)2?a(a≥0);
(4) a2?|a|
3、二次根式的乘除法:
(1)乘法:a??ab(a≥0,b≥0);
(2)除法:aa(a?ba(a≥0,b>0) b§
初二數(shù)學(xué)知識點總結(jié)歸納6
分式
一.知識框架
二.知識概念
1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
2.分式有意義的條件:分母不等于0
3.約分:把一個分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。
4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。
分式的基本性質(zhì):分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:
A/B=A_C/B_C A/B=A÷C/B÷C(A,B,C為整式,且C≠0)
5.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.
6.分式的四則運算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:
a/c±b/c=a±b/c
2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進行計算.用字母表示為:a/b±c/d=ad±cb/bd
3.分式的.乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b _ c/d=ac/bd
4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc
(2).除以一個分式,等于乘以這個分式的倒數(shù):a/b÷c/d=a/b_d/c
7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.
8.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗根(求出未知數(shù)的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數(shù)的取值范圍,可能產(chǎn)生增根).
【初二數(shù)學(xué)知識點總結(jié)歸納】相關(guān)文章:
初二數(shù)學(xué)知識點歸納總結(jié)03-28
初二數(shù)學(xué)必修角的分類知識點歸納11-27
初二物理知識點的歸納12-04
初二英語知識點歸納02-18
初二語文知識點歸納08-05
初二英語知識點歸納09-07
初二物理知識點歸納01-07
(精選)初二英語知識點歸納02-13