初三數(shù)學(xué)知識(shí)點(diǎn)
在日復(fù)一日的學(xué)習(xí)中,大家都背過不少知識(shí)點(diǎn),肯定對(duì)知識(shí)點(diǎn)非常熟悉吧!知識(shí)點(diǎn)有時(shí)候特指教科書上或考試的知識(shí)。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?下面是小編幫大家整理的初三數(shù)學(xué)知識(shí)點(diǎn),僅供參考,希望能夠幫助到大家。(點(diǎn)擊對(duì)應(yīng)目錄可以直接查閱哦。
【1】初三函數(shù)知識(shí)點(diǎn) |
【2】初三相似三角形知識(shí)點(diǎn) |
【3】初三圓的知識(shí)點(diǎn) |
【4】初三概率知識(shí)點(diǎn) |
【5】初三數(shù)學(xué)知識(shí)點(diǎn) |
初三函數(shù)知識(shí)點(diǎn)
一、反比例函數(shù)
1、形如y=k/x(k≠0)或y=kx^—1的函數(shù)叫做反比例函數(shù),k叫做反比例系數(shù)。它的圖像是雙曲線。^—1表示負(fù)一次。
2、在函數(shù)y=k/x(k≠0),當(dāng)k>0時(shí),表達(dá)式中的想x、y符號(hào)相同,點(diǎn)(x,y)在第一、三象限,所以函數(shù)y=k/x(k≠0)的圖像位于第一、三象限;當(dāng)k<0時(shí),表達(dá)式中的想x、y符號(hào)相反,點(diǎn)(x,y)在第二、四象限,所以函數(shù)y=k/x(k≠0)的圖像位于第二、四象限。
3、在y=k/x(k≠0)中,當(dāng)k>0時(shí),在第一象限內(nèi),y隨著x的增大而減。蝗魕的值隨著x的值的增大而增大,則k的取值范圍是k<0。
4、設(shè)P(a,b)是反比例函數(shù)y=k/x(k≠0)上任意一點(diǎn),則ab的值等于k。經(jīng)過反比例函數(shù)上的任意一點(diǎn)P,分別向x軸、y軸作垂線段,則所成的矩形面積為k;過P點(diǎn)向x軸或y軸作垂線段,連接OP,則所成的三角形面積為k/2。
二、二次函數(shù)
1、形如y=ax^2+bx+c(a≠0,a、b、c為常數(shù))。的函數(shù)叫做二次函數(shù),它的圖像是一條拋物線。
2、二次函數(shù)y=ax^2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(—b/2a,4ac—b^2/4a),對(duì)稱軸是直線x=—b/2a。
3、對(duì)于二次函數(shù)y=ax^2+bx+c(a≠0),當(dāng)a>0時(shí),二次函數(shù)圖像向上開口;當(dāng)a<0時(shí),拋物線向下開口。圖像與y軸的交點(diǎn)的坐標(biāo)是(0,c)。
4、一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函數(shù)y=ax^2+bx+c(a≠0)的圖像與x軸交點(diǎn)的橫坐標(biāo)。
當(dāng)b^2—4ac>0時(shí),函數(shù)圖像與x軸有兩個(gè)交點(diǎn)。
當(dāng)b^2—4ac=0時(shí),函數(shù)圖像與x軸有一個(gè)交點(diǎn)。
當(dāng)b^2—4ac<0時(shí),函數(shù)圖像與x軸沒有交點(diǎn)。
5、當(dāng)a>0,且x=—b/2a時(shí),函數(shù)y=ax^2+bx+c(a≠0)取得最小值,這個(gè)值等于4ac—b^2/4a;當(dāng)a<0,且x=—b/2a時(shí),函數(shù)y=ax^2+bx+c(a≠0)取得值,這個(gè)值等于4ac—b^2/4a。
6、拋物線y=ax^2+c(a≠0)的對(duì)稱軸是y軸。
7、對(duì)于二次函數(shù)y=ax^2+bx+c(a≠0),若a,b同號(hào),對(duì)稱軸在y軸右側(cè)a,b異號(hào),對(duì)稱軸在y軸左側(cè)。
8、拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤—b/2a時(shí),y隨x的增大而減小;當(dāng)x≥—b/2a時(shí),y隨x的增大而增大。若a<0,當(dāng)x≤—b/2a時(shí),y隨x的增大而增大;當(dāng)x≥—b/2a時(shí),y隨x的增大而減小。
9、對(duì)于拋物線y=a(x—m)^2+k,左右平移時(shí),只與m有關(guān),往左是加,往右是減;上下平移時(shí),只與k有關(guān),往上是加,往下是減。
三、二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點(diǎn)式:
(3)當(dāng)拋物線與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點(diǎn),則不能這樣表示。
注意:拋物線位置由決定.
(1)決定拋物線的開口方向
①開口向上.
、陂_口向下.
(2)決定拋物線與y軸交點(diǎn)的位置.
、賵D象與y軸交點(diǎn)在x軸上方.
、趫D象過原點(diǎn).
、蹐D象與y軸交點(diǎn)在x軸下方.
(3)決定拋物線對(duì)稱軸的位置(對(duì)稱軸:)
①同號(hào)對(duì)稱軸在y軸左側(cè).
、趯(duì)稱軸是y軸.
③異號(hào)對(duì)稱軸在y軸右側(cè).
(4)頂點(diǎn)坐標(biāo).
(5)決定拋物線與x軸的交點(diǎn)情況.、
、佟>0拋物線與x軸有兩個(gè)不同交點(diǎn).
②△=0拋物線與x軸有的公共點(diǎn)(相切).
、邸<0拋物線與x軸無公共點(diǎn).
(6)二次函數(shù)是否具有、最小值由a判斷.
①當(dāng)a>0時(shí),拋物線有最低點(diǎn),函數(shù)有最小值.
②當(dāng)a<0時(shí),拋物線有點(diǎn),函數(shù)有值.
(7)的符號(hào)的判定:
表達(dá)式,請(qǐng)代值,對(duì)應(yīng)y值定正負(fù);
對(duì)稱軸,用處多,三種式子相約;
軸兩側(cè)判,左同右異中為0;
1的兩側(cè)判,左同右異中為0;
-1兩側(cè)判,左異右同中為0.
(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項(xiàng),上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過頂點(diǎn)來尋找。
(9)對(duì)稱:關(guān)于x軸對(duì)稱的解析式為,關(guān)于y軸對(duì)稱的解析式為,關(guān)于原點(diǎn)軸對(duì)稱的解析式為,在頂點(diǎn)處翻折后的解析式為(a相反,定點(diǎn)坐標(biāo)不變)。
(10)結(jié)論:①二次函數(shù)(與x軸只有一個(gè)交點(diǎn)二次函數(shù)的頂點(diǎn)在x軸上Δ=0;
、诙魏瘮(shù)(的頂點(diǎn)在y軸上二次函數(shù)的圖象關(guān)于y軸對(duì)稱;
、鄱魏瘮(shù)(經(jīng)過原點(diǎn),則。
(11)二次函數(shù)的解析式:
①一般式:(,用于已知三點(diǎn)。
、陧旤c(diǎn)式:,用于已知頂點(diǎn)坐標(biāo)或最值或?qū)ΨQ軸。
(3)交點(diǎn)式:,其中、是二次函數(shù)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)。若已知對(duì)稱軸和在x軸上的截距,也可用此式。
四、二次函數(shù)(4個(gè)考點(diǎn))
考點(diǎn)1:函數(shù)以及函數(shù)的`定義域、函數(shù)值等有關(guān)概念,函數(shù)的表示法,常值函數(shù)
考核要求:(1)通過實(shí)例認(rèn)識(shí)變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;(2)知道常值函數(shù);(3)知道函數(shù)的表示方法,知道符號(hào)的意義.
考點(diǎn)2:用待定系數(shù)法求二次函數(shù)的解析式
考核要求:(1)掌握求函數(shù)解析式的方法;(2)在求函數(shù)解析式中熟練運(yùn)用待定系數(shù)法.
注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原.
考點(diǎn)3:畫二次函數(shù)的圖像
考核要求:(1)知道函數(shù)圖像的意義,會(huì)在平面直角坐標(biāo)系中用描點(diǎn)法畫函數(shù)圖像;(2)理解二次函數(shù)的圖像,體會(huì)數(shù)形結(jié)合思想;(3)會(huì)畫二次函數(shù)的大致圖像.
考點(diǎn)4:二次函數(shù)的圖像及其基本性質(zhì)
考核要求:(1)借助圖像的直觀、認(rèn)識(shí)和掌握一次函數(shù)的性質(zhì),建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;(2)會(huì)用配方法求二次函數(shù)的頂點(diǎn)坐標(biāo),并說出二次函數(shù)的有關(guān)性質(zhì).
注意:(1)解題時(shí)要數(shù)形結(jié)合;(2)二次函數(shù)的平移要化成頂點(diǎn)式.
初三相似三角形知識(shí)點(diǎn)
相似三角形
1、如果兩個(gè)數(shù)的比值與另兩個(gè)數(shù)的比值相等,就說這四個(gè)數(shù)成比例。
2、如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。誰都不能為0。為0無意義。
3、一般的,如果三個(gè)數(shù)a,b,c滿足比例式a:b=b:c,則b就叫做a,c的比例中項(xiàng)。(如果是線段的話,只能取正的,如果是數(shù),正負(fù)都可以)
4、黃金分割:把一條線段分割為兩部分,使其中一部分與全長(zhǎng)之比等于另一部分與這部分之比。其比值是(√5—1)/2,取其前三位數(shù)字的近似值是0.618。
5、證明三角形相似的方法:
。1)平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似。照我們老師的方法來說就是A字型和8字型。
(2)如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。
(3)如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個(gè)三角形相似。
(4)如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似。
。5)對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似。
考點(diǎn)梳理:
、傧嗨迫切蔚男再|(zhì)和判別方法,是重點(diǎn)。
②相似多邊形的認(rèn)識(shí),黃金分割的應(yīng)用。
③相似形與三角形,平行四邊形的綜合性題目是難點(diǎn)。
知識(shí)點(diǎn)1、相似三角形的相關(guān)概念
1)、相似三角形的概念:對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等的兩個(gè)三角形是相似三角形。
三角形相似具有傳遞性。
2)、相似比的概念:相似三角形對(duì)應(yīng)邊的比叫做相似比。相似三角形對(duì)應(yīng)邊的比是有順序的。
3、相似三角形與全等三角形的關(guān)系:相似三角形不一定是全等三角形,但全等三角形一定 是相似三角形。若兩個(gè)相似三角形的相似比是1,則這兩個(gè)三角形是全等三角形,由此可見,全等三角形是相似三角形的一種特例。
知識(shí)點(diǎn)2、相似三角形的判定
判定1:如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似。
判定2:如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且夾角相等,那么這兩個(gè)三角形相似。
判定3:如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。
判定4:直角三角形被斜邊上的'高分成的兩個(gè)直角三角形與原三角形都相似(此知識(shí)常用,用時(shí)需要證明)。
知識(shí)點(diǎn)3、解題中判定相似三角形的思路
有平行截線——用平行線的性質(zhì),找“等角”
有一對(duì)等角——找“另一對(duì)等角”或“夾邊對(duì)應(yīng)成比例”
有兩邊對(duì)應(yīng)成比例——找“夾角相等”或“第三邊也對(duì)應(yīng)成比例”或“有一對(duì)直角”
直角三角形——找“一對(duì)銳角相等”或“兩直角邊對(duì)應(yīng)成比例”
等腰三角形——找“頂角相等”或“一對(duì)底角相等”或“底和腰對(duì)應(yīng)成比例”
知識(shí)點(diǎn)4、相似三角形解題常見思路針對(duì)不同的類型,在解答時(shí)應(yīng)掌握以下幾種常見思路:
。1)在判別兩個(gè)三角形相似時(shí),應(yīng)該注意利用圖中已有的公共角、對(duì)頂角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用。
(2)尋找相似三角形的一般方法:
、偻ㄟ^作平行線構(gòu)造相似三角形或構(gòu)造成比例的線段;
、诶脠D形特征(如有公共邊、公共角的兩個(gè)三角形)趙相似三角形;
、垡罁(jù)基本圖形對(duì)圖形進(jìn)行分解、組合;
、茏鲚o助線構(gòu)造相似三角形;
、堇梅謩e等于中間比的兩個(gè)比相等實(shí)現(xiàn)對(duì)等比進(jìn)行轉(zhuǎn)移。
以上判別三角形相似的方法有時(shí)單獨(dú)使用,有時(shí)需要綜合運(yùn)用,使其具備應(yīng)有的判定條件。
相似三角形(7個(gè)考點(diǎn))
考點(diǎn)1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點(diǎn)以及相似比的意義,能將已知圖形按照要求放大和縮小.
考點(diǎn)2:平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計(jì)算.
注意:被判定平行的一邊不可以作為條件中的對(duì)應(yīng)線段成比例使用.
考點(diǎn)3:相似三角形的概念
考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義.
考點(diǎn)4:相似三角形的判定和性質(zhì)及其應(yīng)用
考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個(gè)判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用.
考點(diǎn)5:三角形的重心
考核要求:知道重心的定義并初步應(yīng)用.
考點(diǎn)6:向量的有關(guān)概念
考點(diǎn)7:向量的加法、減法、實(shí)數(shù)與向量相乘、向量的線性運(yùn)算
考核要求:掌握實(shí)數(shù)與向量相乘、向量的線性運(yùn)算
初三圓的知識(shí)點(diǎn)
圓的定義:
(1)平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。
。2)平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。
圓心:
(1)如定義(1)中,該定點(diǎn)為圓心
。2)如定義(2)中,繞的那一端的端點(diǎn)為圓心。
。3)圓任意兩條對(duì)稱軸的交點(diǎn)為圓心。
。4)垂直于圓內(nèi)任意一條弦且兩個(gè)端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。
注:圓心一般用字母O表示
直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
半徑:連接圓心和圓上任意一點(diǎn)的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對(duì)稱圖形,每條直徑所在的直線是圓的對(duì)稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
圓的周長(zhǎng):圍成圓的曲線的長(zhǎng)度叫做圓的周長(zhǎng),用字母C表示。
圓的周長(zhǎng)與直徑的比值叫做圓周率。圓的周長(zhǎng)除以直徑的商是一個(gè)固定的數(shù),把它叫做圓周率,它是一個(gè)無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計(jì)算時(shí),通常取它的近似值,π≈3.14。
直徑所對(duì)的圓周角是直角。90°的圓周角所對(duì)的弦是直徑。
圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2,用字母S表示。
一條弧所對(duì)的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對(duì)的圓心角相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對(duì)的圓心角相等,所對(duì)的弧相等,所對(duì)的弦心距也相等。
周長(zhǎng)計(jì)算公式
1.、已知直徑:C=πd
2、已知半徑:C=2πr
3、已知周長(zhǎng):D=c\π
4、圓周長(zhǎng)的一半:1\2周長(zhǎng)(曲線)
5、半圓的長(zhǎng):1\2周長(zhǎng)+直徑
面積計(jì)算公式:
1、已知半徑:S=πr平方
2、已知直徑:S=π(d\2)平方
3、已知周長(zhǎng):S=π(c\2π)平方
點(diǎn)、直線、圓和圓的位置關(guān)系
1、點(diǎn)和圓的位置關(guān)系
①點(diǎn)在圓內(nèi)<=>點(diǎn)到圓心的距離小于半徑
、邳c(diǎn)在圓上<=>點(diǎn)到圓心的距離等于半徑
③點(diǎn)在圓外<=>點(diǎn)到圓心的距離大于半徑
2.過三點(diǎn)的圓不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
3.外接圓和外心經(jīng)過三角形的三個(gè)頂點(diǎn)可以做一個(gè)圓,這個(gè)圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心。
4.直線和圓的位置關(guān)系
相交:直線和圓有兩個(gè)公共點(diǎn)叫這條直線和圓相交,這條直線叫做圓的割線。
相切:直線和圓有一個(gè)公共點(diǎn)叫這條直線和圓相切,這條直線叫做圓的切線,這個(gè)點(diǎn)叫做切點(diǎn)。
相離:直線和圓沒有公共點(diǎn)叫這條直線和圓相離。
5.直線和圓位置關(guān)系的性質(zhì)和判定
如果⊙O的半徑為r,圓心O到直線l的距離為d,那么
①直線l和⊙O相交<=>d 、谥本l和⊙O相切<=>d=r; ③直線l和⊙O相離<=>d>r。 圓和圓定義: 兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。 兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。 兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。 兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部,叫做兩個(gè)圓的內(nèi)切。 兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓的內(nèi)含。 原理:圓心距和半徑的數(shù)量關(guān)系: 兩圓外離<=>d>R+r兩圓外切<=>d=R+r兩圓相交<=>R-r 兩圓內(nèi)切<=>d=R-r(R>r)兩圓內(nèi)含<=>d 圓知識(shí)點(diǎn) 圓的面積s=π×r×r 其中,π是周圍率,約等于3.14 r是圓的半徑。 圓的周長(zhǎng)計(jì)算公式為:C=2πR.C代表圓的周長(zhǎng),r代表圓的半徑。圓的面積公式為:S=πR2(R的平方).S代表圓的面積,r為圓的半徑。 橢圓周長(zhǎng)計(jì)算公式 橢圓周長(zhǎng)公式:L=2πb+4(a-b) 橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差。 橢圓面積計(jì)算公式 橢圓面積公式:S=πab 橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。 以上橢圓周長(zhǎng)、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。 1、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的2條弧。 逆定理:平分弦不是直徑的直徑垂直于弦,并且平分弦所對(duì)的2條弧。 2、有關(guān)圓周角和圓心角的性質(zhì)和定理 ①在同圓或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。 、谝粭l弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。 直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。 圓心角計(jì)算公式:θ=L/2πr×360°=180°L/πr=L/r弧度 即圓心角的度數(shù)等于它所對(duì)的弧的度數(shù);圓周角的.度數(shù)等于它所對(duì)的弧的度數(shù)的一半。 、廴绻粭l弧的長(zhǎng)是另一條弧的2倍,那么其所對(duì)的圓周角和圓心角是另一條弧的2倍。 3、如果兩圓相交,那么連接兩圓圓心的線段直線也可垂直平分公共弦。 4、弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。 5、圓內(nèi)角的度數(shù)等于這個(gè)角所對(duì)的弧的度數(shù)之和的一半。 6、圓外角的度數(shù)等于這個(gè)角所截兩段弧的度數(shù)之差的一半。 7、周長(zhǎng)相等,圓面積比長(zhǎng)方形、正方形、三角形的面積大。 圓的知識(shí)要領(lǐng)不僅常考公式,又是也會(huì)直接出一些關(guān)于定理的試題。 圓的相關(guān)概念(6個(gè)考點(diǎn)) 考點(diǎn)1:圓心角、弦、弦心距的概念 考核要求:清楚地認(rèn)識(shí)圓心角、弦、弦心距的概念,并會(huì)用這些概念作出正確的判斷. 考點(diǎn)2:圓心角、弧、弦、弦心距之間的關(guān)系 考核要求:認(rèn)清圓心角、弧、弦、弦心距之間的關(guān)系,在理解有關(guān)圓心角、弧、弦、弦心距之間的關(guān)系的定理及其推論的基礎(chǔ)上,運(yùn)用定理進(jìn)行初步的幾何計(jì)算和幾何證明. 考點(diǎn)3:垂徑定理及其推論 垂徑定理及其推論是圓這一板塊中最重要的知識(shí)點(diǎn)之一. 考點(diǎn)4:直線與圓、圓與圓的位置關(guān)系及其相應(yīng)的數(shù)量關(guān)系 直線與圓的位置關(guān)系可從與之間的關(guān)系和交點(diǎn)的個(gè)數(shù)這兩個(gè)側(cè)面來反映.在圓與圓的位置關(guān)系中,常需要分類討論求解. 考點(diǎn)5:正多邊形的有關(guān)概念和基本性質(zhì) 考核要求:熟悉正多邊形的有關(guān)概念(如半徑、邊心距、中心角、外角和),并能熟練地運(yùn)用正多邊形的基本性質(zhì)進(jìn)行推理和計(jì)算,在正多邊形的計(jì)算中,常常利用正多邊形的半徑、邊心距和邊長(zhǎng)的一半構(gòu)成的直角三角形,將正多邊形的計(jì)算問題轉(zhuǎn)化為直角三角形的計(jì)算問題. 考點(diǎn)6:畫正三、四、六邊形. 考核要求:能用基本作圖工具,正確作出正三、四、六邊形. 一、基本概念 (1)事件的包含、并事件、交事件、相等事件; (2)若A∩B為不可能事件,即A∩B=中,那么稱事件A與事件B互斥; (3)若A∩B為不可能事件,AUB為必然事件,那么稱事件A與事件B互為對(duì)立事件; (4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(AUB)= P(A)+ P/B); 若事件A與B為對(duì)立事件,則AUB為必然事件,所以P(AUB)= P(A)+ P(B)=1,于是有P(A)=1-P(B)。 二、概率的基本性質(zhì) (1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1; (2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(AUB)= P(A)+ P(B); (3)若事件A與B為對(duì)立事件,則AUB為必然事件,所以P(AUB)= P(A)+ P(B)=1于是有P(A)=1-P(B) (4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形: (1)事件A發(fā)生目事件B不發(fā)生: (2)事件A不發(fā)生且事件B發(fā)生: (3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形: (1)事件A發(fā)生B不發(fā)生; (2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。 三、概率的嚴(yán)格定義 設(shè)E是隨機(jī)試驗(yàn),S是它的樣本空間。對(duì)于E的每一事件A賦于一個(gè)實(shí)數(shù),記為P(A),稱為事件A的概率。這里P(·)是一個(gè)集合函數(shù),P(·)要滿足下列條件: (1)非負(fù)性:對(duì)于每一個(gè)事件A,有P(A)≥0; (2)規(guī)范性: 對(duì)于必然事件S,有P(S)=1; (3)可列可加性: 設(shè)A1,A2.....是兩兩互不相容的事件,即對(duì)于i≠j,Ai∩Aj=γ,(i,j=1,2.....),則有P(A1UA2 U ......)=P(A1)+P(A2)+...... 四、概率的統(tǒng)計(jì)定義 在一定條件下,重復(fù)做n次試驗(yàn),nA為n次試驗(yàn)中事件A發(fā)生的次數(shù),如果隨著n逐漸增大,頻率nA/n逐漸穩(wěn)定在某一數(shù)值p附近,則數(shù)值p稱為事件A在該條件下發(fā)生的概率,記作P(A)=p。這個(gè)定義成為概率的統(tǒng)計(jì)定義。 在歷史上,第一個(gè)對(duì)“當(dāng)試驗(yàn)次數(shù)n逐漸增大,頻率nA穩(wěn)定在其概率p上”這一論斷給以嚴(yán)格的`意義和數(shù)學(xué)證明的是早期概率論中上最重要的學(xué)者雅各布伯努利(Jocob Bernoulli,公元1654年~1705年)。 從概率的統(tǒng)計(jì)定義可以看到,數(shù)值p就是在該條件下該事件A發(fā)生可能性大小的一個(gè)數(shù)量指標(biāo)。 由于頻率nA/n總是介于0和1之間,從概率的統(tǒng)計(jì)定義可知,對(duì)任意事件A,皆有0≤P(A)≤1,P(O)=1,P()=0。 O,中分別表示必然事件(在一定條件下必然發(fā)生的事件)和不可能事件(在一定條件下必然不發(fā)生的事件)。 五、求復(fù)雜事件的概率: 1.有些隨機(jī)事件不可能用樹狀圖和列表法求其發(fā)生的概率,只能用試驗(yàn)、統(tǒng)計(jì)的方法估計(jì)其發(fā)生的概率。 2.對(duì)于作何一個(gè)隨機(jī)事件都有一個(gè)固定的概率客觀存在。 3.對(duì)隨機(jī)事件做大量試驗(yàn)時(shí),根據(jù)重復(fù)試驗(yàn)的特征,我們確定概率時(shí)應(yīng)當(dāng)注意幾點(diǎn): (1)盡量經(jīng)歷反復(fù)實(shí)驗(yàn)的過程,不能想當(dāng)然的作出判斷; (2)做實(shí)驗(yàn)時(shí)應(yīng)當(dāng)在相同條件下進(jìn)行; (3)實(shí)驗(yàn)的次數(shù)要足夠多,不能太少; (4)把每一次實(shí)驗(yàn)的結(jié)果準(zhǔn)確,實(shí)時(shí)的做好記錄; (5)分階段分別從第一次起計(jì)算,事件發(fā)生的頻率,并把這些頻率用折線統(tǒng)計(jì)圖直觀的表示出來; (6)觀察分析統(tǒng)計(jì)圖,找出頻率變化的逐漸穩(wěn)定值,并用這個(gè)穩(wěn)定值 估計(jì)事件發(fā)生的概率,這種估計(jì)概率的方法的優(yōu)點(diǎn)是直觀,缺點(diǎn)是估計(jì)值必須在實(shí)驗(yàn)后才能得到,無法事件預(yù)測(cè)。 六、判斷游戲公平: 游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。 七、概率綜合運(yùn)用: 概率可以和很多知識(shí)綜合命題,主要涉及平面圖形、統(tǒng)計(jì)圖、平均數(shù)、中位數(shù)、眾數(shù)、函數(shù)等。 一、重要概念 1.數(shù)的分類及概念數(shù)系表: 說明:分類的原則:1)相稱(不重、不漏) 2)有標(biāo)準(zhǔn) 2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0) 性質(zhì):若干個(gè)非負(fù)數(shù)的`和為0,則每個(gè)非負(fù)數(shù)均為0。 3.倒數(shù): 、俣x及表示法 、谛再|(zhì):A.a1/a(a1);B.1/a中,aa1時(shí),1/aD.積為1。 4.相反數(shù): 、俣x及表示法 、谛再|(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。 5.數(shù)軸: ①定義(三要素) 、谧饔茫篈.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。 6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù)) 定義及表示: 奇數(shù):2n-1 偶數(shù):2n(n為自然數(shù)) 7.絕對(duì)值: 、俣x(兩種): 代數(shù)定義: 幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。 ②│a│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志; 、蹟(shù)a的絕對(duì)值只有一個(gè); ④處理任何類型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。 二、實(shí)數(shù)的運(yùn)算 1.運(yùn)算法則(加、減、乘、除、乘方、開方) 2.運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的] 分配律) 3.運(yùn)算順序:A.高級(jí)運(yùn)算到低級(jí)運(yùn)算;B.(同級(jí)運(yùn)算)從左 到右(如5 C.(有括號(hào)時(shí))由小到中到大。 三、應(yīng)用舉例(略) 附:典型例題 1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│=b-a. 2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號(hào)。 1.軸對(duì)稱: 把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn),對(duì)應(yīng)線段叫做對(duì)稱線段。 2.軸對(duì)稱圖形: 如果一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸。 注意:對(duì)稱軸是直線而不是線段 3.軸對(duì)稱的性質(zhì): (1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形; (2)如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線; (3)兩個(gè)圖形關(guān)于某條直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上; (4)如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。 4.線段垂直平分線: (1)定義:垂直平分一條線段的直線是這條線的垂直平分線。 (2)性質(zhì):①線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等; 、诘揭粭l線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。 注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。 5.角的平分線: (1)定義:把一個(gè)角分成兩個(gè)相等的角的射線叫做角的平分線. (2)性質(zhì):①在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等. ②到一個(gè)角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上. 注意:根據(jù)角平分線的性質(zhì),三角形的三個(gè)內(nèi)角的平分線交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等. 6.等腰三角形的性質(zhì)與判定: 性質(zhì): (1)對(duì)稱性:等腰三角形是軸對(duì)稱圖形,等腰三角形底邊上的中線所在的直線是它的對(duì)稱軸,或底邊上的高所在的直線是它的對(duì)稱軸,或頂角的`平分線所在的直線是它的對(duì)稱軸; (2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合; (3)等邊對(duì)等角:等腰三角形的兩個(gè)底角相等。 說明:等腰三角形的性質(zhì)除三線合一外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:①等腰三角形兩底角的平分線相等;②等腰三角形兩腰上的中線相等; ③等腰三角形兩腰上的高相等;④等腰三角形底邊上的中點(diǎn)到兩腰的距離相等。 判定定理:如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊)。 7.等邊三角形的性質(zhì)與判定: 性質(zhì):(1)等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于60 (2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有三線合一。因此等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸,而等腰三角形(非等邊三角形)只有一條對(duì)稱軸。 判定定理:有一個(gè)角是60的等腰三角形是等邊三角形。 說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。 直角三角形的判定方法: 判定1:定義,有一個(gè)角為90°的三角形是直角三角形。 判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形。(勾股定理的逆定理)。 判定3:若一個(gè)三角形30°內(nèi)角所對(duì)的邊是某一邊的一半,則這個(gè)三角形是以這條長(zhǎng)邊為斜邊的直角三角形。 判定4:兩個(gè)銳角互為余角(兩角相加等于90°)的三角形是直角三角形。 判定5:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線互相垂直。那么 判定6:若在一個(gè)三角形中一邊上的中線等于其所在邊的一半,那么這個(gè)三角形為直角三角形。 判定7:一個(gè)三角形30°角所對(duì)的邊等于這個(gè)三角形斜邊的一半,則這個(gè)三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。) 矩形知識(shí)點(diǎn) 1、矩形的概念 有一個(gè)角是直角的平行四邊形叫做矩形。 2、矩形的性質(zhì) (1)具有平行四邊形的一切性質(zhì) (2)矩形的四個(gè)角都是直角 (3)矩形的對(duì)角線相等 (4)矩形是軸對(duì)稱圖形 3、矩形的判定 (1)定義:有一個(gè)角是直角的平行四邊形是矩形(2)定理1:有三個(gè)角是直角的四邊形是矩形 (3)定理2:對(duì)角線相等的平行四邊形是矩形 4、矩形的面積:S矩形=長(zhǎng)×寬=ab 正方形知識(shí)點(diǎn) 1、正方形的概念 有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。 2、正方形的性質(zhì) (1)具有平行四邊形、矩形、菱形的一切性質(zhì); (2)正方形的四個(gè)角都是直角,四條邊都相等; (3)正方形的`兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角; (4)正方形是軸對(duì)稱圖形,有4條對(duì)稱軸; (5)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對(duì)角線把正方形分成四個(gè)全等的小等腰直角三角形; (6)正方形的一條對(duì)角線上的一點(diǎn)到另一條對(duì)角線的兩端點(diǎn)的距離相等。 3、正方形的判定 (1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種: 先證它是矩形,再證有一組鄰邊相等。 先證它是菱形,再證有一個(gè)角是直角。 (2)判定一個(gè)四邊形為正方形的一般順序如下: 先證明它是平行四邊形; 再證明它是菱形(或矩形); 最后證明它是矩形(或菱形)。 銳角三角比(2個(gè)考點(diǎn)) 考點(diǎn)1:銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值. 考點(diǎn)2:解直角三角形及其應(yīng)用 考核要求:(1)理解解直角三角形的意義;(2)會(huì)用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡(jiǎn)單的實(shí)際問題,尤其應(yīng)當(dāng)熟練運(yùn)用特殊銳角的三角比的值解直角三角形. 對(duì)數(shù)公式 對(duì)數(shù)公式是數(shù)學(xué)中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對(duì)數(shù),記做x=log(a)(N),其中a要寫于log右下。其中a叫做對(duì)數(shù)的底,N叫做真數(shù)。通常我們將以10為底的對(duì)數(shù)叫做常用對(duì)數(shù),以e為底的對(duì)數(shù)稱為自然對(duì)數(shù)。 數(shù)學(xué)學(xué)習(xí)技巧 1.求教與自學(xué)相結(jié)合 在學(xué)習(xí)過程中,即要爭(zhēng)取教師的指導(dǎo)和幫助,但是又不能過分依賴教師, 必須自己主動(dòng)地去學(xué)習(xí)、去探索、去獲取,應(yīng)該在自己認(rèn)真學(xué)習(xí)和研究的基礎(chǔ)上去尋求教師和同學(xué)的幫助。 2.學(xué)習(xí)與思考相結(jié)合 在學(xué)習(xí)過程中,對(duì)課本的內(nèi)容要認(rèn)真研究,提出疑問,追本究源。對(duì)每一個(gè)概念、公式、定理都要弄清其來龍去脈、前因后果、內(nèi)在聯(lián)系,以及蘊(yùn)含于推導(dǎo)過程中的數(shù)學(xué)思想和方法。在解決問題時(shí),要盡量采用不同的`途徑和方法,要克服那種死守書本、機(jī)械呆板、不知變通的學(xué)習(xí)方法。 3.學(xué)用結(jié)合,勤于實(shí)踐 在學(xué)習(xí)過程中,要準(zhǔn)確地掌握抽象概念的本質(zhì)含義,了解從實(shí)際模型中抽象為理論的演變過程。對(duì)所學(xué)理論知識(shí),要在更大范圍內(nèi)尋求它的具體實(shí)例,使之具體化,盡量將所學(xué)的理論知識(shí)和思維方法應(yīng)用于實(shí)踐。 4.博觀約取,由博返約 課本是獲得知識(shí)的主要來源,但不是唯一的來源。在學(xué)習(xí)過程中,除了認(rèn)真研究課本以外,還要閱讀有關(guān)的課外資料,來擴(kuò)大知識(shí)領(lǐng)域。同時(shí)在廣泛閱讀的基礎(chǔ)上,進(jìn)行認(rèn)真研究,掌握其知識(shí)結(jié)構(gòu)。 5.既有模仿,又有創(chuàng)新 模仿是數(shù)學(xué)學(xué)習(xí)中不可缺少的學(xué)習(xí)方法,但是決不能機(jī)械地模仿,應(yīng)該在消化理解的基礎(chǔ)上,開動(dòng)腦筋,提出自己的見解和看法,而不拘泥于已有的框框,不囿于現(xiàn)成的模式。 6.及時(shí)復(fù)習(xí)增強(qiáng)記憶 課堂上學(xué)習(xí)的內(nèi)容,必須當(dāng)天消化,要先復(fù)習(xí),后做練習(xí),復(fù)習(xí)工作必須經(jīng)常進(jìn)行,每一單元結(jié)束后,應(yīng)將所學(xué)知識(shí)進(jìn)行概括整理,使之系統(tǒng)化、深刻化。 7.總結(jié)學(xué)習(xí)經(jīng)驗(yàn),評(píng)價(jià)學(xué)習(xí)效果 學(xué)習(xí)中的總結(jié)和評(píng)價(jià)有利于知識(shí)體系的建立、解題規(guī)律的掌握、學(xué)習(xí)方法與態(tài)度的調(diào)整和評(píng)判能力的提高。在學(xué)習(xí)過程中,應(yīng)注意總結(jié)聽課、閱讀和解題中的收獲和體會(huì)。 鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。 對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的.反向延長(zhǎng)線,像這樣的兩個(gè)角互為對(duì)頂角。 垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。 平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。 同位角、內(nèi)錯(cuò)角、同旁內(nèi)角: 同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。 內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。 同旁內(nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁內(nèi)角。 命題:判斷一件事情的語句叫命題。 平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱平移。 對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。 1.數(shù)的分類及概念 數(shù)系表: 說明:分類的原則:1)相稱(不重、不漏) 2)有標(biāo)準(zhǔn) 2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0) 性質(zhì):若干個(gè)非負(fù)數(shù)的'和為0,則每個(gè)非負(fù)數(shù)均為0。 3.倒數(shù): ①定義及表示法 、谛再|(zhì):A.a1/a(a1);B.1/a中,aC.0 4.相反數(shù): ①定義及表示法 、谛再|(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。 5.數(shù)軸:①定義(三要素) ②作用:A.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。 6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)自然數(shù)) 定義及表示: 奇數(shù):2n-1 偶數(shù):2n(n為自然數(shù)) 7.絕對(duì)值:①定義(兩種): 代數(shù)定義: 幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。 ②│a│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。 知識(shí)點(diǎn)一: 二次根式的概念 形如a(a0)的式子叫做二次根式。 注:在二次根式中,被開放數(shù)可以是數(shù),也可以是單項(xiàng)式、多項(xiàng)式、分式等代數(shù)式,但必須注意:因?yàn)樨?fù)數(shù)沒有平方根,所以a0是a為二次根式的前提條件,如5,(x2+1),(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。 知識(shí)點(diǎn)二:取值范圍 1. 二次根式有意義的條件:由二次根式的意義可知,當(dāng)a0時(shí)a有意義,是二次根式,所以要使二次根式有意義,只要使被開方數(shù)大于或等于零即可。 2. 二次根式無意義的條件:因負(fù)數(shù)沒有算術(shù)平方根,所以當(dāng)a﹤0時(shí),a沒有意義。 知識(shí)點(diǎn)三:二次根式a(a0)的非負(fù)性 a(a0)表示a的算術(shù)平方根,也就是說,a(a0)是一個(gè)非負(fù)數(shù),即0(a0)。 注:因?yàn)槎胃絘表示a的算術(shù)平方根,而正數(shù)的算術(shù)平方根是正數(shù),0的算術(shù)平方根是0,所以非負(fù)數(shù)(a0)的算術(shù)平方根是非負(fù)數(shù),即0(a0),這個(gè)性質(zhì)也就是非負(fù)數(shù)的算術(shù)平方根的性質(zhì),和絕對(duì)值、偶次方類似。這個(gè)性質(zhì)在解答題目時(shí)應(yīng)用較多,如若a+b=0,則a=0,b=0;若a+|b|=0,則a=0,b=0;若a+b2=0,則a=0,b=0。 知識(shí)點(diǎn)四:二次根式(a) 的性質(zhì) (a)2=a(a0) 文字語言敘述為:一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方等于這個(gè)非負(fù)數(shù)。 注:二次根式的性質(zhì)公式(a)2=a(a0)是逆用平方根的定義得出的.結(jié)論。上面的公式也可以反過來應(yīng)用:若a0,則 a=(a)2,如:2=(2)2,1/2=(1/2)2. 知識(shí)點(diǎn)五:二次根式的性質(zhì) a2=|a| 文字語言敘述為:一個(gè)數(shù)的平方的算術(shù)平方根等于這個(gè)數(shù)的絕對(duì)值。 注: 1、化簡(jiǎn)a2時(shí),一定要弄明白被開方數(shù)的底數(shù)a是正數(shù)還是負(fù)數(shù),若是正數(shù)或0,則等于a本身,即a2=|a|=a (a若a是負(fù)數(shù),則等于a的相反數(shù)-a,即a2=|a|=-a (a﹤0); 2、a2中的a的取值范圍可以是任意實(shí)數(shù),即不論a取何值,a2一定有意義; 3、化簡(jiǎn)a2時(shí),先將它化成|a|,再根據(jù)絕對(duì)值的意義來進(jìn)行化簡(jiǎn)。 知識(shí)點(diǎn)六:(a)2與a2的異同點(diǎn) 1、不同點(diǎn):(a)2與a2表示的意義是不同的,(a)2表示一個(gè)非負(fù)數(shù)a的算術(shù)平方根的平方,而a2表示一個(gè)實(shí)數(shù)a的平方的算術(shù)平方根;在(a)2中,而a2中a可以是正實(shí)數(shù),0,負(fù)實(shí)數(shù)。但(a)2與a2都是非負(fù)數(shù),即(a)20,a20。因而它的運(yùn)算的結(jié)果是有差別的,(a)2=a(a0) ,而a2=|a|。 2、相同點(diǎn):當(dāng)被開方數(shù)都是非負(fù)數(shù),即a0時(shí),(a)2=a﹤0時(shí),(a)2無意義,而a2=|a|=-a. 全套教科書包含了課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計(jì)與概率”“實(shí)踐與綜合應(yīng)用”四個(gè)領(lǐng)域的內(nèi)容,在體系結(jié)構(gòu)的設(shè)計(jì)上力求反映這些內(nèi)容之間的聯(lián)系與綜合,使它們形成一個(gè)有機(jī)的整體。 九年級(jí)上冊(cè)包括二次根式、一元二次方程、旋轉(zhuǎn)、圓、概率初步五章內(nèi)容,學(xué)習(xí)內(nèi)容涉及到了《課程標(biāo)準(zhǔn)》的四個(gè)領(lǐng)域。本冊(cè)書內(nèi)容分析如下: 第21章二次根式 學(xué)生已經(jīng)學(xué)過整式與分式,知道用式子可以表示實(shí)際問題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問題還會(huì)遇到二次根式!岸胃健币徽戮蛠碚J(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。 在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論: 注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對(duì)于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。“二次根式的乘除”一節(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計(jì)算的例子體會(huì)二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到 并運(yùn)用它們進(jìn)行二次根式的化簡(jiǎn)。 “二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。 第22章一元二次方程 學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問題的方法。在解決某些實(shí)際問題時(shí)還會(huì)遇到一種新方程——一元二次方程。“一元二次方程”一章就來認(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問題。 本章首先通過雕像設(shè)計(jì)、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過數(shù)值代入的方法找出某些簡(jiǎn)單的一元二次方程的解,對(duì)一元二次方程的解加以體會(huì),并給出一元二次方程的根的概念,“22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。 (1)在介紹配方法時(shí),首先通過實(shí)際問題引出形如的方程。這樣的方程可以化為更為簡(jiǎn)單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對(duì)于沒有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。 (2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒有實(shí)數(shù)根的`一元二次方程。由此引出一元二次方程的解的三種情況。 (3)在介紹因式分解法時(shí),首先通過實(shí)際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。 “22.3實(shí)際問題與一元二次方程”一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。 第23章旋轉(zhuǎn) 學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱,探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書中圖形變換又增添了一名新成員――旋轉(zhuǎn)!靶D(zhuǎn)”一章就來認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱和中心對(duì)稱圖形。 “23.1旋轉(zhuǎn)”一節(jié)首先通過實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過例題說明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。 “23.2中心對(duì)稱”一節(jié)首先通過實(shí)例介紹中心對(duì)稱的概念。然后讓學(xué)生探究中心對(duì)稱的性質(zhì)。在此基礎(chǔ)上,通過例題說明作與一個(gè)圖形成中心對(duì)稱的圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對(duì)稱圖形的概念。最后介紹關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱的圖形的方法。 “23.3課題學(xué)習(xí)圖案設(shè)計(jì)”一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。 第24章圓 圓是一種常見的圖形。在“圓”這一章,學(xué)生將進(jìn)一步認(rèn)識(shí)圓,探索它的性質(zhì),并用這些知識(shí)解決一些實(shí)際問題。通過這一章的學(xué)習(xí),學(xué)生的解決圖形問題的能力將會(huì)進(jìn)一步提高。 “24.1圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運(yùn)用這些結(jié)論解決問題。接下來,讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問題。 “24.2與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過證明“在同一直線上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線和圓的三種位置關(guān)系、切線的概念以及與切線有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。 “24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。 “24.4弧長(zhǎng)和扇形面積”一節(jié)首先介紹弧長(zhǎng)公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。 第25章概率初步 將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認(rèn)識(shí)這個(gè)問題了。掌握了概率的初步知識(shí),學(xué)生還會(huì)解決更多的實(shí)際問題。 “25.1概率”一節(jié)首先通過實(shí)例介紹隨機(jī)事件的概念,然后通過擲幣問題引出概率的概念。 “25.2用列舉法求概率”一節(jié)首先通過具體試驗(yàn)引出用列舉法求概率的方法。然后安排運(yùn)用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。 “25.3利用頻率估計(jì)概率”一節(jié)通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計(jì)概率的方法。 “25.4課題學(xué)習(xí)鍵盤上字母的排列規(guī)律”一節(jié)讓學(xué)生通過這一課題的研究體會(huì)概率的廣泛應(yīng)用。 【初三數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章: 初三數(shù)學(xué)的知識(shí)點(diǎn)歸納09-25 初三數(shù)學(xué)的知識(shí)點(diǎn)歸納04-20 初三數(shù)學(xué)知識(shí)點(diǎn)12-21 初三數(shù)學(xué)知識(shí)點(diǎn)歸納12-15 初三數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)10-25 初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)07-25 初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-08 初三概率知識(shí)點(diǎn)
初三數(shù)學(xué)知識(shí)點(diǎn) 1
初三數(shù)學(xué)知識(shí)點(diǎn) 2
初三數(shù)學(xué)知識(shí)點(diǎn) 3
初三數(shù)學(xué)知識(shí)點(diǎn) 4
初三數(shù)學(xué)知識(shí)點(diǎn) 5
初三數(shù)學(xué)知識(shí)點(diǎn) 6
初三數(shù)學(xué)知識(shí)點(diǎn) 7
初三數(shù)學(xué)知識(shí)點(diǎn) 8