欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

初一

初一數(shù)學(xué) 圖形的認(rèn)識(shí)定理與公式 知識(shí)點(diǎn)回顧

時(shí)間:2021-07-21 12:04:50 初一 我要投稿

初一數(shù)學(xué) 圖形的認(rèn)識(shí)定理與公式 知識(shí)點(diǎn)回顧

  (1)角

初一數(shù)學(xué) 圖形的認(rèn)識(shí)定理與公式 知識(shí)點(diǎn)回顧

  角平分線的性質(zhì):角平分線上的點(diǎn)到角的兩邊距離相等,角的內(nèi)部到兩邊距離相等的點(diǎn)在角平分線上。

  (2)相交線與平行線

  同角或等角的補(bǔ)角相等,同角或等角的余角相等;

  對(duì)頂角的性質(zhì):對(duì)頂角相等

  垂線的性質(zhì):

  ①過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;

 、谥本外一點(diǎn)有與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短;

  線段垂直平分線定義:過(guò)線段的中點(diǎn)并且垂直于線段的直線叫做線段的垂直平分線;

  線段垂直平分線的性質(zhì):線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等,到線段兩端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線;

  平行線的定義:在同一平面內(nèi)不相交的兩條直線叫做平行線;

  平行線的判定:

 、偻唤窍嗟,兩直線平行;

 、趦(nèi)錯(cuò)角相等,兩直線平行;

 、弁詢(nèi)角互補(bǔ),兩直線平行;

  平行線的特征:

  ①兩直線平行,同位角相等;

 、趦芍本平行,內(nèi)錯(cuò)角相等;

 、蹆芍本平行,同旁內(nèi)角互補(bǔ);

  平行公理:經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線平行于已知直線。

  (3)三角形

  三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;

  三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于;

  三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和;

  三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;

  三角形的三條角平分線交于一點(diǎn)(內(nèi)心);

  三角形的三邊的垂直平分線交于一點(diǎn)(外心);

  三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;

  全等三角形的判定:

 、龠吔沁吂恚⊿AS)

  ②角邊角公理(ASA)

 、劢墙沁叾ɡ恚ˋAS)

 、苓呥呥吂恚⊿SS)

 、菪边、直角邊公理(HL)

  等腰三角形的性質(zhì):

  ①等腰三角形的兩個(gè)底角相等;

 、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)

  等腰三角形的判定:

  有兩個(gè)角相等的三角形是等腰三角形;

  直角三角形的性質(zhì):

 、僦苯侨切蔚膬蓚(gè)銳角互為余角;

  ②直角三角形斜邊上的中線等于斜邊的一半;

  ③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);

 、苤苯侨切沃薪撬鶎(duì)的直角邊等于斜邊的一半;

  直角三角形的判定:

  ①有兩個(gè)角互余的三角形是直角三角形;

 、谌绻切蔚娜呴L(zhǎng)a、b、c有下面關(guān)系,那么這個(gè)三角形是直角三角形(勾股定理的逆定理)。

  (4)四邊形

  多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n≥3,n是正整數(shù));

  平行四邊形的性質(zhì):

 、倨叫兴倪呅蔚膶(duì)邊相等;

  ②平行四邊形的對(duì)角相等;

  ③平行四邊形的對(duì)角線互相平分;

  平行四邊形的判定:

 、賰山M對(duì)角分別相等的四邊形是平行四邊形;

  ②兩組對(duì)邊分別相等的四邊形是平行四邊形;

  ③對(duì)角線互相平分的'四邊形是平行四邊形;

 、芤唤M對(duì)邊平行且相等的四邊形是平行四邊形。

  矩形的性質(zhì):(除具有平行四邊形所有性質(zhì)外)

 、倬匦蔚乃膫(gè)角都是直角;

 、诰匦蔚膶(duì)角線相等;

  矩形的判定:

 、儆腥齻(gè)角是直角的四邊形是矩形;

 、趯(duì)角線相等的平行四邊形是矩形;

  菱形的特征:(除具有平行四邊形所有性質(zhì)外)

 、倭庑蔚乃倪呄嗟龋

 、诹庑蔚膶(duì)角線互相垂直平分,并且每一條對(duì)角線平分一組對(duì)角;

  菱形的判定:

  四邊相等的四邊形是菱形;

  正方形的特征:

 、僬叫蔚乃倪呄嗟;

  ②正方形的四個(gè)角都是直角;

 、壅叫蔚膬蓷l對(duì)角線相等,且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;

  正方形的判定:

  ①有一個(gè)角是直角的菱形是正方形;

 、谟幸唤M鄰邊相等的矩形是正方形。

  等腰梯形的特征:

  ①等腰梯形同一底邊上的兩個(gè)內(nèi)角相等

 、诘妊菪蔚膬蓷l對(duì)角線相等。

  等腰梯形的判定:

  ①同一底邊上的兩個(gè)內(nèi)角相等的梯形是等腰梯形;

 、趦蓷l對(duì)角線相等的梯形是等腰梯形。

  平面圖形的鑲嵌:

  任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面;

  (5)圓

  點(diǎn)與圓的位置關(guān)系(設(shè)圓的半徑為r,點(diǎn)P到圓心O的距離為d):

  ①點(diǎn)P在圓上,則d=r,反之也成立;

 、邳c(diǎn)P在圓內(nèi),則d<r,反之也成立;

 、埸c(diǎn)P在圓外,則d>r,反之也成立;

  圓心角、弦和弧三者之間的關(guān)系:在同圓或等圓中,圓心角、弦和弧三者之間只要有一組相等,可以得到另外兩組也相等;

  圓的確定:不在一直線上的三個(gè)點(diǎn)確定一個(gè)圓;

  垂徑定理(及垂徑定理的推論):垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條;

  平行弦夾等。簣A的兩條平行弦所夾的弧相等;

  圓心角定理:圓心角的度數(shù)等于它所對(duì)弧的度數(shù);

  圓心角、弧、弦、弦心距之間的關(guān)系定理及推論:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦的弦心距相等;

  推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量分別相等;

  圓周角定理:圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半;

  圓周角定理的推論:直徑所對(duì)的圓周角是直角,反過(guò)來(lái),的圓周角所對(duì)的弦是直徑;

  切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線;

  切線的性質(zhì)定理:圓的切線垂直于過(guò)切點(diǎn)的半徑;

  切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,這一點(diǎn)到兩切點(diǎn)的線段相等,它與圓心的連線平分兩切線的夾角;

  (6)尺規(guī)作圖(基本作圖、利用基本圖形作三角形和圓)

  作一條線段等于已知線段,作一個(gè)角等于已知角;作已知角的平分線;作線段的垂直平分線;過(guò)一點(diǎn)作已知直線的垂線;

  (7)視圖與投影

  畫基本幾何體(直棱柱、圓柱、圓錐、球)的三視圖(主視圖、左視圖、俯視圖);

  基本幾何體的展開圖(除球外)、根據(jù)展開圖判斷和設(shè)別立體模型;

【初一數(shù)學(xué) 圖形的認(rèn)識(shí)定理與公式 知識(shí)點(diǎn)回顧】相關(guān)文章:

圖形定理公式小結(jié)06-04

小升初數(shù)學(xué)定義定理公式知識(shí)點(diǎn)08-20

數(shù)學(xué)圖形計(jì)算公式知識(shí)點(diǎn)06-23

中考數(shù)學(xué)直線的公式定理知識(shí)點(diǎn)輔導(dǎo)10-17

中考數(shù)學(xué)直線的公式定理知識(shí)點(diǎn)復(fù)習(xí)10-07

數(shù)學(xué)認(rèn)識(shí)圖形知識(shí)點(diǎn)01-26

初一上冊(cè)數(shù)學(xué)圖形認(rèn)識(shí)的知識(shí)點(diǎn)09-04

初一數(shù)學(xué)上冊(cè)認(rèn)識(shí)圖形知識(shí)點(diǎn)08-28

初一上冊(cè)數(shù)學(xué)圖形初步認(rèn)識(shí)的知識(shí)點(diǎn)09-20