初一數(shù)學(xué) 圖形的認(rèn)識(shí)定理與公式 知識(shí)點(diǎn)回顧
(1)角
角平分線的性質(zhì):角平分線上的點(diǎn)到角的兩邊距離相等,角的內(nèi)部到兩邊距離相等的點(diǎn)在角平分線上。
(2)相交線與平行線
同角或等角的補(bǔ)角相等,同角或等角的余角相等;
對(duì)頂角的性質(zhì):對(duì)頂角相等
垂線的性質(zhì):
①過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;
、谥本外一點(diǎn)有與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短;
線段垂直平分線定義:過(guò)線段的中點(diǎn)并且垂直于線段的直線叫做線段的垂直平分線;
線段垂直平分線的性質(zhì):線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等,到線段兩端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線;
平行線的定義:在同一平面內(nèi)不相交的兩條直線叫做平行線;
平行線的判定:
、偻唤窍嗟,兩直線平行;
、趦(nèi)錯(cuò)角相等,兩直線平行;
、弁詢(nèi)角互補(bǔ),兩直線平行;
平行線的特征:
①兩直線平行,同位角相等;
、趦芍本平行,內(nèi)錯(cuò)角相等;
、蹆芍本平行,同旁內(nèi)角互補(bǔ);
平行公理:經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線平行于已知直線。
(3)三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于;
三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和;
三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心);
三角形的三邊的垂直平分線交于一點(diǎn)(外心);
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;
全等三角形的判定:
、龠吔沁吂恚⊿AS)
②角邊角公理(ASA)
、劢墙沁叾ɡ恚ˋAS)
、苓呥呥吂恚⊿SS)
、菪边、直角邊公理(HL)
等腰三角形的性質(zhì):
①等腰三角形的兩個(gè)底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
等腰三角形的判定:
有兩個(gè)角相等的三角形是等腰三角形;
直角三角形的性質(zhì):
、僦苯侨切蔚膬蓚(gè)銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
、苤苯侨切沃薪撬鶎(duì)的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個(gè)角互余的三角形是直角三角形;
、谌绻切蔚娜呴L(zhǎng)a、b、c有下面關(guān)系,那么這個(gè)三角形是直角三角形(勾股定理的逆定理)。
(4)四邊形
多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n≥3,n是正整數(shù));
平行四邊形的性質(zhì):
、倨叫兴倪呅蔚膶(duì)邊相等;
②平行四邊形的對(duì)角相等;
③平行四邊形的對(duì)角線互相平分;
平行四邊形的判定:
、賰山M對(duì)角分別相等的四邊形是平行四邊形;
②兩組對(duì)邊分別相等的四邊形是平行四邊形;
③對(duì)角線互相平分的'四邊形是平行四邊形;
、芤唤M對(duì)邊平行且相等的四邊形是平行四邊形。
矩形的性質(zhì):(除具有平行四邊形所有性質(zhì)外)
、倬匦蔚乃膫(gè)角都是直角;
、诰匦蔚膶(duì)角線相等;
矩形的判定:
、儆腥齻(gè)角是直角的四邊形是矩形;
、趯(duì)角線相等的平行四邊形是矩形;
菱形的特征:(除具有平行四邊形所有性質(zhì)外)
、倭庑蔚乃倪呄嗟龋
、诹庑蔚膶(duì)角線互相垂直平分,并且每一條對(duì)角線平分一組對(duì)角;
菱形的判定:
四邊相等的四邊形是菱形;
正方形的特征:
、僬叫蔚乃倪呄嗟;
②正方形的四個(gè)角都是直角;
、壅叫蔚膬蓷l對(duì)角線相等,且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;
正方形的判定:
①有一個(gè)角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
等腰梯形的特征:
①等腰梯形同一底邊上的兩個(gè)內(nèi)角相等
、诘妊菪蔚膬蓷l對(duì)角線相等。
等腰梯形的判定:
①同一底邊上的兩個(gè)內(nèi)角相等的梯形是等腰梯形;
、趦蓷l對(duì)角線相等的梯形是等腰梯形。
平面圖形的鑲嵌:
任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面;
(5)圓
點(diǎn)與圓的位置關(guān)系(設(shè)圓的半徑為r,點(diǎn)P到圓心O的距離為d):
①點(diǎn)P在圓上,則d=r,反之也成立;
、邳c(diǎn)P在圓內(nèi),則d<r,反之也成立;
、埸c(diǎn)P在圓外,則d>r,反之也成立;
圓心角、弦和弧三者之間的關(guān)系:在同圓或等圓中,圓心角、弦和弧三者之間只要有一組相等,可以得到另外兩組也相等;
圓的確定:不在一直線上的三個(gè)點(diǎn)確定一個(gè)圓;
垂徑定理(及垂徑定理的推論):垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條;
平行弦夾等。簣A的兩條平行弦所夾的弧相等;
圓心角定理:圓心角的度數(shù)等于它所對(duì)弧的度數(shù);
圓心角、弧、弦、弦心距之間的關(guān)系定理及推論:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦的弦心距相等;
推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量分別相等;
圓周角定理:圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半;
圓周角定理的推論:直徑所對(duì)的圓周角是直角,反過(guò)來(lái),的圓周角所對(duì)的弦是直徑;
切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線;
切線的性質(zhì)定理:圓的切線垂直于過(guò)切點(diǎn)的半徑;
切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,這一點(diǎn)到兩切點(diǎn)的線段相等,它與圓心的連線平分兩切線的夾角;
(6)尺規(guī)作圖(基本作圖、利用基本圖形作三角形和圓)
作一條線段等于已知線段,作一個(gè)角等于已知角;作已知角的平分線;作線段的垂直平分線;過(guò)一點(diǎn)作已知直線的垂線;
(7)視圖與投影
畫基本幾何體(直棱柱、圓柱、圓錐、球)的三視圖(主視圖、左視圖、俯視圖);
基本幾何體的展開圖(除球外)、根據(jù)展開圖判斷和設(shè)別立體模型;
【初一數(shù)學(xué) 圖形的認(rèn)識(shí)定理與公式 知識(shí)點(diǎn)回顧】相關(guān)文章:
圖形定理公式小結(jié)06-04
小升初數(shù)學(xué)定義定理公式知識(shí)點(diǎn)08-20
數(shù)學(xué)圖形計(jì)算公式知識(shí)點(diǎn)06-23
中考數(shù)學(xué)直線的公式定理知識(shí)點(diǎn)輔導(dǎo)10-17
中考數(shù)學(xué)直線的公式定理知識(shí)點(diǎn)復(fù)習(xí)10-07
數(shù)學(xué)認(rèn)識(shí)圖形知識(shí)點(diǎn)01-26
初一上冊(cè)數(shù)學(xué)圖形認(rèn)識(shí)的知識(shí)點(diǎn)09-04