初一數(shù)學(xué)知識點(diǎn)總結(jié)實(shí)用【15篇】
總結(jié)是事后對某一階段的學(xué)習(xí)或工作情況作加以回顧檢查并分析評價(jià)的書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,不如靜下心來好好寫寫總結(jié)吧。如何把總結(jié)做到重點(diǎn)突出呢?以下是小編收集整理的初一數(shù)學(xué)知識點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。
初一數(shù)學(xué)知識點(diǎn)總結(jié)1
一、隋唐科舉制度:
北:P20科舉制是通過分科考試選拔官吏的制度。隋唐時(shí)期創(chuàng)立并完善了科舉制度,強(qiáng)調(diào)以才能作為選官標(biāo)準(zhǔn)的原則。
二、武則天
北:P13—15武則天是我國歷的女皇帝。
武則天統(tǒng)治時(shí)期,不拘一格選拔普通地主中的優(yōu)秀人才。注重減輕農(nóng)民負(fù)擔(dān),采取各種措施促進(jìn)社會生產(chǎn)斷續(xù)發(fā)。當(dāng)時(shí),人口明顯增長,邊疆得到鞏固和開拓,史稱有“貞觀遺風(fēng)”,為唐朝全盛時(shí)期的到來奠定了基礎(chǔ)。
三、“開元盛世”
北:P15唐玄宗統(tǒng)治前期政局穩(wěn)定,經(jīng)濟(jì)繁榮,被譽(yù)為“開元盛世”。
四、唐與吐蕃的交往:
P28吐蕃是今藏族祖先。文成公主入藏與松贊干布聯(lián)姻,密切了唐蕃經(jīng)濟(jì)文化的交流。
五、遣唐使、玄奘西行、鑒真東渡
(一)遣唐使
北:P32遣唐使是日本政府派遣到唐朝進(jìn)行文化交流的使團(tuán);遣唐使把唐朝的典章制度、天文歷法、書法藝術(shù)、建筑藝術(shù)以及生活習(xí)俗等帶回本國,對日本的生產(chǎn)、生活與社會發(fā)展產(chǎn)生了深遠(yuǎn)影響。
。ǘ╄b真東渡
北:P33鑒真到達(dá)日本除講授佛經(jīng),還詳細(xì)介紹中斬醫(yī)藥、建筑、雕塑、文學(xué)、書法、繪畫等技術(shù)知識,對中日經(jīng)濟(jì)文化交流做出了杰出貢獻(xiàn)。(識圖P34鑒真東渡示意圖)
。ㄈ┬饰餍
北:P35玄奘是唐朝的高僧,為了求取佛經(jīng)精義,他西行前往佛教圣地天竺。玄奘是第一個(gè)系統(tǒng)地把天竺佛教、歷史、地理、風(fēng)土人情等記錄下來并介紹到中國的人。(玄奘西行示意圖)
六、列舉“貞觀之治”的主要內(nèi)容,評價(jià)唐太宗:略
經(jīng)濟(jì)重心的南移和民族關(guān)系的發(fā)展
一、中國古代經(jīng)濟(jì)重心的南移
北:P64魏晉南北朝以來,全國經(jīng)濟(jì)重心出現(xiàn)了南移的趨勢。兩宋時(shí)全國的經(jīng)濟(jì)重心從黃河流域轉(zhuǎn)移到長江流域。
二、成吉思汗統(tǒng)一蒙古和忽必烈建立元朝的史實(shí)
北:P75—7612,蒙古貴族在斡難河源召開大會,推舉鐵木真為蒙古族的`首領(lǐng),尊稱為“成吉思汗”,建立蒙古政權(quán)1260年,成吉思汗之孫忽必烈繼承蒙古汗位。1271年,忽必烈改國號為元,建立元朝,第二年定都大都。忽必烈為元世祖。
歷史學(xué)習(xí)方法技巧
一、學(xué)會聽課
用新的方式聽老師復(fù)習(xí)階段的輔導(dǎo)課。復(fù)習(xí)階段聽老師講課,聽什么?聽思路,聽提煉,聽挖掘,聽補(bǔ)充、聽小結(jié),聽解題方法的指導(dǎo)。聽課過程中,一有所得,當(dāng)即記于課本天頭地腳處,以供備忘,正如“好記性不如爛筆頭”。
二、學(xué)會課后自己整理教材
在歷史能力測試中,分成兩個(gè)部分:一是閉卷的選擇題;一是開卷的材料分析題。主要考察同學(xué)對歷史史實(shí)的認(rèn)知和遷移以及運(yùn)用基本的歷史方法解決問題的能力,包括對歷史知識的識記、理解和運(yùn)用。千變?nèi)f化的能力測試題都離不開考察你對教材的認(rèn)識。所以,要以不變應(yīng)萬變,抓住教材為本。在整理教材的過程中注意以下幾方面:
。1)知識主干化。在知識結(jié)構(gòu)的框架下,記住其中的主干知識,不要孤立的記憶它。所謂的主干知識,是指按課標(biāo)要求掌握的重大歷史事件(或人物)的內(nèi)容和影響(或作用)。表現(xiàn)在課文中,即是每一課子目的核心內(nèi)容。這些內(nèi)容不多,記住的目的是為了突出重點(diǎn),并能由此而鏈接更多的知識點(diǎn),提高對知識的積累量,進(jìn)而提高分析問題的能力和效力,以及準(zhǔn)確性。這部分往往會在閉卷的選擇題部分來考察。
。2)知識線索化。在對每一單元知識結(jié)構(gòu)整理的基礎(chǔ)上,聯(lián)系比較上一單元和下一單元的知識,整理出本冊書的知識線索,這需要在老師的引導(dǎo)下完成。在知識線索下,加強(qiáng)對知識因果關(guān)系的理解,有的事件是一因多果,有的是多因一果,有的是一因多果等等,注意全面、辨證、多角度地分析。并要注意這些歷史對今天社會建設(shè)中的啟示。這類知識一般在開卷部分以材料為載體多重設(shè)問來體現(xiàn)。有的同學(xué)往往認(rèn)為歷史考試中有很大部分是開卷的,所以沒必要抓教材,殊不知,在考試中時(shí)間緊,如果對教材沒整體認(rèn)識和熟悉,根本沒法在短短的時(shí)間內(nèi)完成檢測內(nèi)容。因此,教材知識的線索化這個(gè)環(huán)節(jié)尤其重要。
。3)注意教材中的插圖、文獻(xiàn)材料和注釋和課文中補(bǔ)充的小字。課文中的插圖:可以用來加深對課文中相關(guān)知識的理解。首先,要善于觀察,抓住其中隱含的歷史信息。其次,掌握一些識圖的技巧,如,注意地形圖中的圖示含義、線條的走向和古今地名國名的變化;了解人物圖中的神態(tài);發(fā)現(xiàn)景物圖中的細(xì)節(jié)和特征等。文獻(xiàn)材料:一般在課文中用黑體字表現(xiàn),它是史實(shí)來源的第一手材料或第二手材料,學(xué)習(xí)時(shí),注意其出處,聯(lián)系課文相關(guān)內(nèi)容,解讀其中語句的含義,這樣能幫助我們提高閱讀能力,形成論從史出、史證結(jié)合的學(xué)習(xí)方法。小字部分往往容易在檢測中以材料的形式出現(xiàn),考查學(xué)生的歸納和知識遷移能力。這個(gè)環(huán)節(jié)的培養(yǎng)有利于我們在考場上把沒見過的材料與我們所學(xué)的知識結(jié)合起來。
三、注意歷史復(fù)習(xí)中的記憶方法。
許多歷史知識需要記憶。有好的記憶方法,就能收到事半功倍的效果。歷史知識的記憶法很多,最常用最有效的記憶方法有以下幾種:濃縮記憶法、圖示記憶法、數(shù)字歸納記憶法、聯(lián)想比較記憶法。
初一數(shù)學(xué)知識點(diǎn)總結(jié)2
1、單項(xiàng)式:數(shù)字與字母的積,叫做單項(xiàng)式。
2、多項(xiàng)式:幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
3、整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
4、單項(xiàng)式的次數(shù):單項(xiàng)式中所有字母的指數(shù)的和叫單項(xiàng)式的次數(shù)。
5、多項(xiàng)式的次數(shù):多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。
6、余角:兩個(gè)角的和為90度,這兩個(gè)角叫做互為余角。
7、補(bǔ)角:兩個(gè)角的和為180度,這兩個(gè)角叫做互為補(bǔ)角。
8、對頂角:兩個(gè)角有一個(gè)公共頂點(diǎn),其中一個(gè)角的兩邊是另一個(gè)角兩邊的反向延長線。這兩個(gè)角就是對頂角。
9、同位角:在“三線八角”中,位置相同的'角,就是同位角。
10、內(nèi)錯(cuò)角:在“三線八角”中,夾在兩直線內(nèi),位置錯(cuò)開的角,就是內(nèi)錯(cuò)角。
11、同旁內(nèi)角:在“三線八角”中,夾在兩直線內(nèi),在第三條直線同旁的角,就是同旁內(nèi)角。
12、有效數(shù)字:一個(gè)近似數(shù),從左邊第一個(gè)不為0的數(shù)開始,到精確的那位止,所有的數(shù)字都是有效數(shù)字。
13、概率:一個(gè)事件發(fā)生的可能性的大小,就是這個(gè)事件發(fā)生的概率。
14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
15、三角形的角平分線:在三角形中,一個(gè)內(nèi)角的角平分線與它的對邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做三角形的角平分線。
16、三角形的中線:在三角形中連接一個(gè)頂點(diǎn)與它的對邊中點(diǎn)的線段,叫做這個(gè)三角形的中線。
17、三角形的高線:從一個(gè)三角形的一個(gè)頂點(diǎn)向它的對邊所在的直線作垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。
18、全等圖形:兩個(gè)能夠重合的圖形稱為全等圖形。
19、變量:變化的數(shù)量,就叫變量。
20、自變量:在變化的量中主動發(fā)生變化的,變叫自變量。
21、因變量:隨著自變量變化而被動發(fā)生變化的量,叫因變量。
22、軸對稱圖形:如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形。
23、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。
24、垂直平分線:線段是軸對稱圖形,它的一條對稱軸垂直于這條線段并且平分它,這樣的直線叫做這條線段的垂直平分線。(簡稱中垂線)
初一數(shù)學(xué)知識點(diǎn)總結(jié)3
角的種類
角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負(fù)角:按照順時(shí)針方向旋轉(zhuǎn)而成的角叫做負(fù)角。
正角:逆時(shí)針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。
對頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長線,這樣的兩個(gè)角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚(gè)角相等。
一元一次方程組的解法
一般步驟:
第一步:去分母,在方程兩邊同乘以所有分母的最小公倍數(shù).注意:分子要加括號,不要漏乘不含有分母的項(xiàng);
第二步:去括號,先去小括號,再去中括號,最后去大括號.注意:不要漏乘括號內(nèi)各項(xiàng),若括號前面是“ - ”,去括號后括號內(nèi)各項(xiàng)都要變號;
第三步:移項(xiàng),把含有未知數(shù)的項(xiàng)移到方程的一邊,其他項(xiàng)移到另一邊.注意:移項(xiàng)要變號,不移的項(xiàng)不變號,移項(xiàng)時(shí)不要漏項(xiàng);
第四步:合并同類項(xiàng),把方程化為 ax=b(a≠0)的形式.注意:系數(shù)相加,字母部分不變;
第五步:系數(shù)化為 1,把方程兩邊同除以未知數(shù)的系數(shù) a,得到方程的解 x={frac{a}}(a≠0).注意:不要把分子、分母位置顛倒.
整式的加減
1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式;數(shù)字或字母的乘積叫單項(xiàng)式(單獨(dú)的一個(gè)數(shù)字或字母也是單項(xiàng)式)。
2.系數(shù):單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù)。任何一個(gè)非零數(shù)的零次方等于1.
3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式。
4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。
5.常數(shù)項(xiàng):不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
6.多項(xiàng)式的排列
(1)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從大到小的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母降冪排列。
(2)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母升冪排列。
7.多項(xiàng)式的排列時(shí)注意:
(1)由于單項(xiàng)式的項(xiàng),包括它前面的性質(zhì)符號,因此在排列時(shí),仍需把每一項(xiàng)的性質(zhì)符號看作是這一項(xiàng)的一部分,一起移動。
(2)有兩個(gè)或兩個(gè)以上字母的多項(xiàng)式,排列時(shí),要注意:
a.先確認(rèn)按照哪個(gè)字母的指數(shù)來排列。
b.確定按這個(gè)字母向里排列,還是向外排列。
(3)整式:
單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
8. 多項(xiàng)式的加法:
多項(xiàng)式的加法,是指多項(xiàng)式的同類項(xiàng)的系數(shù)相加(即合并同類項(xiàng))。
9.同類項(xiàng):所含字母相同,并且相同字母的次數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。
10.合并同類項(xiàng):多項(xiàng)式中的同類項(xiàng)可以合并,叫做合并同類項(xiàng),合并同類項(xiàng)的法則是:同類項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。
第一章 有理數(shù)
1.1 正數(shù)與負(fù)數(shù)
在以前學(xué)過的0以外的數(shù)前面加上負(fù)號“—”的數(shù)叫負(fù)數(shù)(negative number)。
與負(fù)數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時(shí)在正數(shù)前面也加上“+”)。
1.2 有理數(shù)
正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù)(integer),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)(fraction)。
整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)(rational number)。
通常用一條直線上的點(diǎn)表示數(shù),這條直線叫數(shù)軸(number axis)。
數(shù)軸三要素:原點(diǎn)、正方向、單位長度。
在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn)(origin)。
只有符號不同的兩個(gè)數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值(absolute value),記作|a|。
一個(gè)正數(shù)的絕對值是它本身;一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個(gè)負(fù)數(shù),絕對值大的反而小。
1.3 有理數(shù)的加減法
有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的'兩個(gè)數(shù)相加得0。
3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
有理數(shù)減法法則:減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。
1.4 有理數(shù)的乘除法
有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。任何數(shù)同0相乘,都得0。
乘積是1的兩個(gè)數(shù)互為倒數(shù)。
有理數(shù)除法法則:除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個(gè)不等于0的數(shù),都得0。 mì
求n個(gè)相同因數(shù)的積的運(yùn)算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
把一個(gè)大于10的數(shù)表示成a×10的n次方的形式,用的就是科學(xué)計(jì)數(shù)法。
從一個(gè)數(shù)的左邊第一個(gè)非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個(gè)數(shù)的有效數(shù)字(significant digit)。
第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數(shù)的等式。
方程都只含有一個(gè)未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個(gè)值就是方程的解(solution)。
等式的性質(zhì):
1.等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。
2.等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等。
2.2 從古老的代數(shù)書說起——一元一次方程的討論(1)
把等式一邊的某項(xiàng)變號后移到另一邊,叫做移項(xiàng)。
第三章 圖形認(rèn)識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點(diǎn)的所有連線中,線段做短(兩點(diǎn)之間,線段最短)。
連接兩點(diǎn)間的線段的長度,叫做這兩點(diǎn)的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運(yùn)算
如果兩個(gè)角的和等于90度(直角),就說這兩個(gè)叫互為余角(compiementary angle),即其中每一個(gè)角是另一個(gè)角的余角。
如果兩個(gè)角的和等于180度(平角),就說這兩個(gè)叫互為補(bǔ)角(supplementary angle),即其中每一個(gè)角是另一個(gè)角的補(bǔ)角。
等角(同角)的補(bǔ)角相等。
等角(同角)的余角相等。
第四章 數(shù)據(jù)的收集與整理
收集、整理、描述和分析數(shù)據(jù)是數(shù)據(jù)處理的基本過程。
第五章 相交線與平行線
5.1 相交線
對頂角(vertical angles)相等。
過一點(diǎn)有且只有一條直線與已知直線垂直(perpendicular)。
連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短(簡單說成:垂線段最短)。
5.2 平行線
經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行(parallel)。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。
5.3 平行線的性質(zhì)
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。
兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。
判斷一件事情的語句,叫做命題(proposition)。
第六章 平面直角坐標(biāo)系
6.1 平面直角坐標(biāo)系
含有兩個(gè)數(shù)的詞來表示一個(gè)確定的位置,其中兩個(gè)數(shù)各自表示不同的含義,我們把這種有順序的兩個(gè)數(shù)a和b組成的數(shù)對,叫做有序數(shù)對(ordered pair)。
初一數(shù)學(xué)知識點(diǎn)整理7-10章
第七章 三角形
7.1 與三角形有關(guān)的線段
三角形(triangle)具有穩(wěn)定性。
7.2 與三角形有關(guān)的角
三角形的內(nèi)角和等于180度。
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和。
三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角
7.3 多邊形及其內(nèi)角和
n邊形內(nèi)角和等于:(n-2)?180度
多邊形(polygon)的外角和等于360度。
第八章 二元一次方程組
8.1 二元一次方程組
方程中含有兩個(gè)未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。
把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組(system of linear equations of two unknowns)。
使二元一次方程兩邊的值相等的兩個(gè)未知數(shù)的值,叫做二元一次方程的解。
二元一次方程組的兩個(gè)方程的公共解,叫做二元一次方程組的解。
8.2 消元
將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的想法,叫做消元思想。
第九章 不等式與不等式組
9.1 不等式
用小于號或大于號表示大小關(guān)系的式子,叫做不等式(inequality)。
使不等式成立的未知數(shù)的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質(zhì):
不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號的方向不變。
不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變。
三角形中任意兩邊之差小于第三邊。
三角形中任意兩邊之和大于第三邊。
9.3 一元一次不等式組
把兩個(gè)一元一次不等式合在起來,就組成了一個(gè)一元一次不等式組(linear inequalities of one unknown)。
第十章 實(shí)數(shù)
10.1 平方根
如果一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根(arithmetic square root),2是根指數(shù)。
a的算術(shù)平方根讀作“根號a”,a叫做被開方數(shù)(radicand)。
0的算術(shù)平方根是0。
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根或二次方根(square root) 。
求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方(extraction of square root)。
10.2 立方根
如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根或三次方根(cube root)。
求一個(gè)數(shù)的立方根的運(yùn)算,叫做開立方(extraction of cube root)。
10.3 實(shí)數(shù)
無限不循環(huán)小數(shù)又叫做無理數(shù)(irrational number)。
有理數(shù)和無理數(shù)統(tǒng)稱實(shí)數(shù)(real number)。
初一數(shù)學(xué)知識點(diǎn)總結(jié)4
代數(shù)
1.代數(shù)式:用運(yùn)算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實(shí)際生活或生產(chǎn)有意義;單獨(dú)一個(gè)數(shù)或一個(gè)字母也是代數(shù)式.
2.列代數(shù)式的幾個(gè)注意事項(xiàng)(數(shù)學(xué)規(guī)范):
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“·”乘,或省略不寫;
。2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“·”乘,也不能省略乘號;
。3)數(shù)與字母相乘時(shí),一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分?jǐn)?shù)與字母相乘時(shí),要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×應(yīng)寫成a;
。5)在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
。6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時(shí),則應(yīng)分類,寫做a-b和b-a.
3.幾個(gè)重要的代數(shù)式:(m、n表示整數(shù))
。1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
。3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個(gè)連續(xù)整數(shù)是:n-1、n、n+1;
。4)若b>0,則正數(shù)是:a2+b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是:a2,非正數(shù)是:-a2.
有理數(shù)
1.有理數(shù):
1凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
2有理數(shù)的分類:①②
3注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的.特性;
4自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.
3.相反數(shù):
1、只有符號不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
2、注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
3、相反數(shù)的和為0a+b=0a、b互為相反數(shù).
初一數(shù)學(xué)知識點(diǎn)總結(jié)5
一、知識梳理
知識點(diǎn)1:正、負(fù)數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負(fù)數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負(fù)數(shù)。我們可以用正數(shù)與負(fù)數(shù)表示具有相反意義的量。
知識點(diǎn)2:有理數(shù)的概念和分類:整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種:
注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分?jǐn)?shù)。
知識點(diǎn)3:數(shù)軸的概念:像下面這樣規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。
知識點(diǎn)4:絕對值的概念:
。1)幾何意義:數(shù)軸上表示a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值,記作|a|;
(2)代數(shù)意義:一個(gè)正數(shù)的絕對值是它的本身;一個(gè)負(fù)數(shù)的.絕對值是它的相反數(shù);零的絕對值是零。
注:任何一個(gè)數(shù)的絕對值均大于或等于0(即非負(fù)數(shù)).
知識點(diǎn)5:相反數(shù)的概念:
。1)幾何意義:在數(shù)軸上分別位于原點(diǎn)的兩旁,到原點(diǎn)的距離相等的兩個(gè)點(diǎn)所表示的數(shù),叫做互為相反數(shù);
。2)代數(shù)意義:符號不同但絕對值相等的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。
知識點(diǎn)6:有理數(shù)大小的比較:
有理數(shù)大小比較的基本法則:正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的大。
用絕對值進(jìn)行有理數(shù)大小的比較:兩個(gè)正數(shù),絕對值大的正數(shù)大;兩個(gè)負(fù)數(shù),絕對值大的負(fù)數(shù)反而小。
知識點(diǎn)7:有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,絕對值相等時(shí),和為0;絕對值不等時(shí),取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
知識點(diǎn)8:有理數(shù)加法運(yùn)算律:
加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。
加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
知識點(diǎn)9:有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
知識點(diǎn)10:有理數(shù)加減混合運(yùn)算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,然后省略括號和加號,并運(yùn)用加法法則、加法運(yùn)算律進(jìn)行計(jì)算。
初一數(shù)學(xué)知識點(diǎn)總結(jié)6
基本平面圖形
1、直線的性質(zhì)
(1)直線公理:經(jīng)過兩個(gè)點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。)
(2)過一點(diǎn)的直線有無數(shù)條。
(3)直線是是向兩方面無限延伸的,無端點(diǎn),不可度量,不能比較大小。
2、線段的性質(zhì)
(1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。)
(2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。
(3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。
3、線段的中點(diǎn):點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM=BM=1/2AB(或AB=2AM=2BM)。
4、角:有公共端點(diǎn)的兩條射線組成的.圖形叫做角,兩條射線的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線叫做這個(gè)角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。
5、角的表示
角的表示方法有以下四種:
、儆脭(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。
、谟眯懙南ED字母表示單獨(dú)的一個(gè)角,如∠α,∠β,∠γ,∠θ等。
、塾靡粋(gè)大寫英文字母表示一個(gè)獨(dú)立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。
、苡萌齻(gè)大寫英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。
注意:用三個(gè)大寫字母表示角時(shí),一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。
6、角的度量
角的度量有如下規(guī)定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
7、角的平分線,從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
8、角的性質(zhì)
(1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。
(2)角的大小可以度量,可以比較,角可以參與運(yùn)算。
9、平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時(shí),所形成的角叫做周角。
10、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線段叫做多邊形的對角線。
從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(n-3)條對角線,把這個(gè)n邊形分割成(n-2)個(gè)三角形。
11、圓:平面上,一條線段繞著一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。
初一數(shù)學(xué)知識點(diǎn)總結(jié)7
1、相反數(shù)
只有符號不同的兩個(gè)數(shù)叫做互為相反數(shù),其中一個(gè)是另一個(gè)的相反數(shù),0的相反數(shù)是0。
注意:
、畔喾磾(shù)是成對出現(xiàn)的;
⑵相反數(shù)只有符號不同,若一個(gè)為正,則另一個(gè)為負(fù);
⑶0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。
2、相反數(shù)的性質(zhì)與判定
⑴、何數(shù)都有相反數(shù),且只有一個(gè);
、0的相反數(shù)是0;
、腔橄喾磾(shù)的兩數(shù)和為0,和為0的.兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0
3、相反數(shù)的幾何意義
在數(shù)軸上與原點(diǎn)距離相等的兩點(diǎn)表示的兩個(gè)數(shù),是互為相反數(shù);互為相反數(shù)的兩個(gè)數(shù),在數(shù)軸上的對應(yīng)點(diǎn)(0除外)在原點(diǎn)兩旁,并且與原點(diǎn)的距離相等。0的相反數(shù)對應(yīng)原點(diǎn);原點(diǎn)表示0的相反數(shù)。說明:在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱。
4、相反數(shù)的求法
、徘笠粋(gè)數(shù)的相反數(shù),只要在它的前面添上負(fù)號“—”即可求得(如:5的相反數(shù)是—5);
、魄蠖鄠(gè)數(shù)的和或差的相反數(shù)時(shí),要用括號括起來再添“—”,然后化簡(如;5a+b的相反數(shù)是—(5a+b);喌谩5a—b);
、乔笄懊鎺А啊钡膯蝹(gè)數(shù),也應(yīng)先用括號括起來再添“—”,然后化簡(如:—5的相反數(shù)是—(—5),化簡得5)
5、相反數(shù)的表示方法
、乓话愕兀瑪(shù)a的相反數(shù)是—a,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。
當(dāng)a>0時(shí),—a<0(正數(shù)的相反數(shù)是負(fù)數(shù))
當(dāng)a<0時(shí),—a>0(負(fù)數(shù)的相反數(shù)是正數(shù))
當(dāng)a=0時(shí),—a=0,(0的相反數(shù)是0)
初一數(shù)學(xué)知識點(diǎn)總結(jié)8
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程。
2.一元一次方程:只含有一個(gè)未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。
注:⑴方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個(gè)數(shù)值(或幾個(gè)數(shù)值),而解方程的'含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計(jì)算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。
二、等式的性質(zhì)
。1)等式兩邊都加上(或減去)同個(gè)數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么ac=bc
。2)等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc
三、移項(xiàng)法則:把等式一邊的某項(xiàng)變號后移到另一邊,叫做移項(xiàng)。
四、去括號法則
1.括號外的因數(shù)是正數(shù),去括號后各項(xiàng)的符號與原括號內(nèi)相應(yīng)各項(xiàng)的符號相同.
2.括號外的因數(shù)是負(fù)數(shù),去括號后各項(xiàng)的符號與原括號內(nèi)相應(yīng)各項(xiàng)的符號改變.
五、解方程的一般步驟
1.去分母(方程兩邊同乘各分母的最小公倍數(shù))
2.去括號(按去括號法則和分配律)
3.移項(xiàng)(把含有未知數(shù)的項(xiàng)移到方程一邊,其他項(xiàng)都移到方程的另一邊,移項(xiàng)要變號)
4.合并(把方程化成ax=b(a0)形式)
5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba)。
六、用方程思想解決實(shí)際問題的一般步驟
1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。
2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。
3.列:根據(jù)題意列方程。
4.解:解出所列方程。
5.檢:檢驗(yàn)所求的解是否符合題意。
6.答:寫出答案(有單位要注明答案)。
七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系
1、和、差、倍、分問題:
(1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn)。
(2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn)。
2、等積變形問題:
“等積變形”是以形狀改變而體積不變?yōu)榍疤帷3S玫攘筷P(guān)系為:
、傩螤蠲娣e變了,周長沒變;
②原料體積=成品體積。
3、勞力調(diào)配問題:
這類問題要搞清人數(shù)的變化,常見題型有:
(1)既有調(diào)入又有調(diào)出。
。2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變。
。3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變。
4、數(shù)字問題
。1)要搞清楚數(shù)的表示方法:一個(gè)三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個(gè)位數(shù)字為c(其中a、b、c均為整數(shù),且19,09,09)則這個(gè)三位數(shù)表示為:100a+10b+c
(2)數(shù)字問題中一些表示:兩個(gè)連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n2表示;奇數(shù)用2n+1或2n1表示。
5、工程問題:
工程問題中的三個(gè)量及其關(guān)系為:工作總量=工作效率工作時(shí)間
6、行程問題:
(1)行程問題中的三個(gè)基本量及其關(guān)系:路程=速度時(shí)間。
。2)基本類型有
、傧嘤鰡栴};
、谧芳皢栴};常見的還有:相背而行;行船問題;環(huán)形跑道問題。
7、商品銷售問題
有關(guān)關(guān)系式:
商品利潤=商品售價(jià)商品進(jìn)價(jià)=商品標(biāo)價(jià)折扣率商品進(jìn)價(jià)
商品利潤率=商品利潤/商品進(jìn)價(jià)
商品售價(jià)=商品標(biāo)價(jià)折扣率
8、儲蓄問題
。1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時(shí)間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅
。2)利息=本金利率期數(shù)
本息和=本金+利息
利息稅=利息稅率(20%)
今天的內(nèi)容就介紹這里了。
初一數(shù)學(xué)知識點(diǎn)總結(jié)9
代數(shù)初步知識
1、代數(shù)式:用運(yùn)算符號“+-×÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式、注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實(shí)際生活或生產(chǎn)有意義;單獨(dú)一個(gè)數(shù)或一個(gè)字母也是代數(shù)式、
2、列代數(shù)式的幾個(gè)注意事項(xiàng):
。1)數(shù)與字母相乘,或字母與字母相乘通常使用“”乘,或省略不寫;
。2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“”乘,也不能省略乘號;
(3)數(shù)與字母相乘時(shí),一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
。4)帶分?jǐn)?shù)與字母相乘時(shí),要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×112應(yīng)寫成a;
233(5)在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
a(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時(shí),則應(yīng)分類,寫做a-b和b-a、
3、幾個(gè)重要的代數(shù)式:(m、n表示整數(shù))
。1)a與b的平方差是:a-b;a與b差的平方是:(a-b);
。2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個(gè)連續(xù)整數(shù)是:n-1、n、n+1;
。4)若b>0,則正數(shù)是:a+b,負(fù)數(shù)是:-a-b,非負(fù)數(shù)是:a,非正數(shù)是:-a、2222222
有理數(shù)
1、有理數(shù):(1)凡能寫成
qp(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù)、正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)
統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)、注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
正有理數(shù)
(2)有理數(shù)的分類:
、儆欣頂(shù)零負(fù)有理數(shù)正整數(shù)正分?jǐn)?shù)負(fù)整數(shù)負(fù)分?jǐn)?shù)整數(shù)
、谟欣頂(shù)分?jǐn)?shù)正整數(shù)零負(fù)整數(shù)正分?jǐn)?shù)負(fù)分?jǐn)?shù)
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
1.a(chǎn)≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù)、
2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線、
3.相反數(shù):
(1)只有符號不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的.相反數(shù)是-a-b;
(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù)、
4、絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);
注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(a0)a(a0)a(2)絕對值可表示為:a0(a0)或a;絕對值的問題經(jīng)常分類討論;
初一數(shù)學(xué)知識點(diǎn)總結(jié)10
第五章《相交線與平行線》
一、知識點(diǎn)
5.1相交線5.1.1相交線
有一個(gè)公共的頂點(diǎn),有一條公共的邊,另外一邊互為反向延長線,這樣的兩個(gè)角叫做鄰補(bǔ)角。
兩條直線相交有4對鄰補(bǔ)角。
有公共的頂點(diǎn),角的兩邊互為反向延長線,這樣的兩個(gè)角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
5.1.2兩條直線相交,所成的四個(gè)角中有一個(gè)角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。
注意:⑴垂線是一條直線。
⑵具有垂直關(guān)系的兩條直線所成的4個(gè)角都是90。
、谴怪笔窍嘟坏奶厥馇闆r。
、却怪钡挠浄ǎ篴⊥b,AB⊥CD。
畫已知直線的垂線有無數(shù)條。
過一點(diǎn)有且只有一條直線與已知直線垂直。
連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡單說成:垂線段最短。直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離。
5.2平行線5.2.1平行線
在同一平面內(nèi),兩條直線沒有交點(diǎn),則這兩條直線互相平行,記作:a∥b。在同一平面內(nèi)兩條直線的關(guān)系只有兩種:相交或平行。
平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。5.2.2直線平行的條件
兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個(gè)角叫做同位角。兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側(cè),這樣的兩個(gè)角叫做內(nèi)錯(cuò)角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個(gè)角叫做同旁內(nèi)角。判定兩條直線平行的方法:
方法1兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
方法2兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行。簡單說成:內(nèi)錯(cuò)角相等,兩直線平行。
方法3兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行。簡單說成:同旁內(nèi)角互補(bǔ),兩直線平行。
5.3平行線的性質(zhì)
平行線具有性質(zhì):
性質(zhì)1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。性質(zhì)2兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。簡單說成:兩直線平行,內(nèi)錯(cuò)角相等。
性質(zhì)3兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡單說成:兩直線平行,同旁內(nèi)角互補(bǔ)。同時(shí)垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。判斷一件事情的語句叫做命題。5.4平移
、虐岩粋(gè)圖形整體沿某一方向移動,會得到一個(gè)新的圖形,新圖形與原圖形的形狀和大小完全相同。
、菩聢D形中的每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這兩個(gè)點(diǎn)是對應(yīng)點(diǎn),連接各組對應(yīng)點(diǎn)的線段平行且相等。
圖形的這種移動,叫做平移變換,簡稱平移。
第六章《平面直角坐標(biāo)系》
一、知識點(diǎn)
6.1平面直角坐標(biāo)系
6.1.1有序數(shù)對
有順序的兩個(gè)數(shù)a與b組成的數(shù)對,叫做有序數(shù)對。
6.1.2平面直角坐標(biāo)系
平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸取2向上方向?yàn)檎较;兩坐?biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面上的任意一點(diǎn)都可以用一個(gè)有序數(shù)對來表示。
建立了平面直角坐標(biāo)系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個(gè)部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標(biāo)軸上的點(diǎn)不屬于任何象限。
6.2坐標(biāo)方法的簡單應(yīng)用
6.2.1用坐標(biāo)表示地理位置
利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些地點(diǎn)分布情況平面圖的過程如下:
、沤⒆鴺(biāo)系,選擇一個(gè)適當(dāng)?shù)膮⒄拯c(diǎn)為原點(diǎn),確定x軸、y軸的正方向;
、聘鶕(jù)具體問題確定適當(dāng)?shù)谋壤,在坐?biāo)軸上標(biāo)出單位長度;
⑶在坐標(biāo)平面內(nèi)畫出這些點(diǎn),寫出各點(diǎn)的坐標(biāo)和各個(gè)地點(diǎn)的名稱。6.2.2用坐標(biāo)表示平移
在平面直角坐標(biāo)系中,將點(diǎn)(x,y)向右(或左)平移a個(gè)單位長度,可以得到對應(yīng)點(diǎn)(x+a,y)(或(x-a,y));將點(diǎn)(x,y)向上(或下)平移b個(gè)單位長度,可以得到對應(yīng)點(diǎn)(x,y+b)(或(x,y-b))。
在平面直角坐標(biāo)系內(nèi),如果把一個(gè)圖形各個(gè)點(diǎn)的橫坐標(biāo)都加(或減去)一個(gè)正數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個(gè)單位長度;如果把它各個(gè)點(diǎn)的縱坐標(biāo)都加(或減去)一個(gè)正數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個(gè)單位長度。
第七章《三角形》
一、知識點(diǎn)
7.1與三角形有關(guān)的線段
7.1.1三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內(nèi)角,簡稱三角形的角。
頂點(diǎn)是A、B、C的三角形,記作“△ABC”,讀作“三角形ABC”。三角形兩邊的和大于第三邊。7.1.2三角形的高、中線和角平分線7.1.3三角形的穩(wěn)定性
三角形具有穩(wěn)定性。7.2與三角形有關(guān)的角7.2.1三角形的內(nèi)角
三角形的內(nèi)角和等于180。
7.2.2三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。三角形的'一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和。三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角。
7.3多邊形及其內(nèi)角和7.3.1多邊形
在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線。n邊形的對角線公式:
n(n-3)2各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
7.3.2多邊形的內(nèi)角和
n邊形的內(nèi)角和公式:180(n-2)多邊形的外角和等于360。
7.4課題學(xué)習(xí)鑲嵌
1三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形!2判斷三條線段能否組成三角形。
、賏+b>c(ab為最短的兩條線段)②a-b
a-b 進(jìn)而求得這個(gè)二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。 兩個(gè)二元一次方程中同一未知數(shù)的系數(shù)相反或相等時(shí),將兩個(gè)方程的兩邊分別相加或相減,就能消去這個(gè)未知數(shù),得到一個(gè)一元一次方程。這種方法叫做加減消元法,簡稱加減法。 第九章《不等式與不等式組》 一、知識點(diǎn) 9.1不等式 9.1.1不等式及其解集 用“<”或“>”號表示大小關(guān)系的式子叫做不等式。使不等式成立的未知數(shù)的值叫做不等式的解。 能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡稱解集。含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。 9.1.2不等式的性質(zhì) 不等式有以下性質(zhì): 不等式的性質(zhì)1不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號的方向不變。不等式的性質(zhì)2不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號的方向不變。不等式的性質(zhì)3不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變。9.2實(shí)際問題與一元一次不等式 解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為x<a(或x>a)的形式。 9.3一元一次不等式組 把兩個(gè)不等式合起來,就組成了一個(gè)一元一次不等式組。 幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。 對于具有多種不等關(guān)系的問題,可通過不等式組解決。解一元一次不等式組時(shí)。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。9.4課題學(xué)習(xí)利用不等關(guān)系分析比賽 1、配方法;所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成—個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。 2、因式分解法,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學(xué)課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的.常用手段。 3、換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來的式子,使它簡化,使問題易于解決。 4、構(gòu)造法;在解題時(shí),我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起—座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。 5、反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為兩種:一種是相反的結(jié)論只有一種,另一種是相反的結(jié)論有無數(shù)種。前者需要把相反的結(jié)論推翻,后者只要舉出一個(gè)反例,就達(dá)到了證明的目的。 (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類:①整數(shù)②分?jǐn)?shù) (3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的`數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性; (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù); a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0?a是負(fù)數(shù)或0a是非正數(shù). 有理數(shù)比大。 (1)正數(shù)的絕對值越大,這個(gè)數(shù)越大; (2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小; (3)正數(shù)大于一切負(fù)數(shù); (4)兩個(gè)負(fù)數(shù)比大小,絕對值大的反而小; (5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大; (6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0. 相反數(shù) (1)相反數(shù)的概念:只有符號不同的兩個(gè)數(shù)叫做互為相反數(shù). (2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨(dú)存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個(gè)數(shù),它們分別在原點(diǎn)兩旁且到原點(diǎn)距離相等. (3)多重符號的化簡:與“+”個(gè)數(shù)無關(guān),有奇數(shù)個(gè)“﹣”號結(jié)果為負(fù),有偶數(shù)個(gè)“﹣”號,結(jié)果為正. (4)規(guī)律方法總結(jié):求一個(gè)數(shù)的相反數(shù)的.方法就是在這個(gè)數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時(shí)m+n是一個(gè)整體,在整體前面添負(fù)號時(shí),要用小括號. 2代數(shù)式求值 (1)代數(shù)式的:用數(shù)值代替代數(shù)式里的字母,計(jì)算后所得的結(jié)果叫做代數(shù)式的值. (2)代數(shù)式的求值:求代數(shù)式的值可以直接代入、計(jì)算.如果給出的代數(shù)式可以化簡,要先化簡再求值. 題型簡單總結(jié)以下三種: 、僖阎獥l件不化簡,所給代數(shù)式化簡; 、谝阎獥l件化簡,所給代數(shù)式不化簡; 、垡阎獥l件和所給代數(shù)式都要化簡. 3由三視圖判斷幾何體 (1)由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀. (2)由物體的三視圖想象幾何體的形狀是有一定難度的,可以從以下途徑進(jìn)行分析: 、俑鶕(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,以及幾何體的長、寬、高; ②從實(shí)線和虛線想象幾何體看得見部分和看不見部分的輪廓線; 、凼煊浺恍┖唵蔚膸缀误w的三視圖對復(fù)雜幾何體的想象會有幫助; ④利用由三視圖畫幾何體與有幾何體畫三視圖的互逆過程,反復(fù)練習(xí),不斷總結(jié)方法 一、導(dǎo)數(shù)的應(yīng)用 1、用導(dǎo)數(shù)研究函數(shù)的最值 確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。 學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗(yàn)下學(xué)習(xí)成果。 2、生活中常見的函數(shù)優(yōu)化問題 1)費(fèi)用、成本最省問題 2)利潤、收益最大問題 3)面積、體積最(大)問題 二、推理與證明 1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識,分析兩類對象之間的關(guān)系,通過兩類對象已知的相似特征得出所需要的相似特征。 2、類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。 三、不等式 對于含有參數(shù)的一元二次不等式解的討論 1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。 2)不等式對應(yīng)方程的根:如果一元二次不等式對應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進(jìn)行分類討論。 通過不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。 四、坐標(biāo)平面上的直線 1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。 2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。 3、重難點(diǎn):初步建立代數(shù)方法解決幾何問題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。 五、圓錐曲線 1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。 2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線 上及求曲線的交點(diǎn)。掌握圓、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問題。 3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過代數(shù)方法解決幾何問題。 高二上冊數(shù)學(xué)必修一知識點(diǎn)歸納 1、機(jī)械振動:機(jī)械振動是指物體在平衡位置附近所做的往復(fù)運(yùn)動。 2、回復(fù)力:回復(fù)力是指振動物體所受到的指向平衡位置的力,是由作用效果來命名的回復(fù)力的作用效果總是將物體拉回平衡位置,從而使物體圍繞平衡位置做周期性的'往復(fù)運(yùn)動;貜(fù)力是由振動物體所受力的合力(如彈簧振子)沿振動方向的分力(如單擺)提供的,這就是回復(fù)力的來源。 3、平衡位置:平衡位置是指物體在振動中所受的回復(fù)力為零的位置,此時(shí)振子未必一定處于平衡狀態(tài)。比如單擺經(jīng)過平衡位置時(shí),雖然回復(fù)力為零,但合外力并不為零,還有向心力。 4、描述振動的物理量: 、傥灰瓶偸窍鄬τ谄胶馕恢枚缘模较蚩偸怯善胶馕恢弥赶蛘褡铀诘奈恢谩偸潜畴x平衡位置向外; 、谡穹俏矬w離開平衡位置的距離,它描述的是振動的強(qiáng)弱,振幅是標(biāo)量; 、垲l率是單位時(shí)間內(nèi)完成全振動的次數(shù); 、芟辔挥脕砻枋稣褡诱駝拥牟秸{(diào)。如果振動的振動情況完全相反,則振動步調(diào)相反,為反相位。 5、簡諧運(yùn)動: A、簡諧運(yùn)動的回復(fù)力和位移的變化規(guī)律; B、單擺的周期。由本身性質(zhì)決定的周期叫固有周期,與擺球的質(zhì)量、振幅(振動的總能量)無關(guān)。 6、簡諧運(yùn)動的表達(dá)式和圖象:x=Asin(ωt+φ0)簡諧運(yùn)動的圖象描述的是一個(gè)質(zhì)點(diǎn)做簡諧運(yùn)動時(shí),在不同時(shí)刻的位移,因而振動圖象反映了振子的運(yùn)動規(guī)律(注意:振動圖象不是運(yùn)動軌跡)。由振動圖象還可以確定振子某時(shí)刻的振動方向。 7、簡諧運(yùn)動的能量:不計(jì)摩擦和空氣阻力的振動是理想化的振動,此時(shí)系統(tǒng)只有重力或彈力做功,機(jī)械能守恒。振動的能量和振幅有關(guān),振幅越大,振動的能量越大。 第一章:有理數(shù) ★0既不是正數(shù),也不是負(fù)數(shù)。0是正數(shù)和負(fù)數(shù)的分界!镎麛(shù)的概念:正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)!锓?jǐn)?shù)的概念:正負(fù)數(shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)!镉欣頂(shù)的概念:整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。 ★數(shù)軸的概念:規(guī)定了原點(diǎn)、正方向、單位長度的一條直線叫數(shù)軸。 。1)在直線上任意取一點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn); 。2)通常規(guī)定直線上從原點(diǎn)向右(上)為正方向,從原點(diǎn)向左(或下)為負(fù)方向;(3)選取適當(dāng)?shù)拈L度為單位長度,直線上從原點(diǎn)向右,每隔一個(gè)單位長度取一個(gè)點(diǎn), 依次表示1,2,3,---;從原點(diǎn)向左,用類似的方法依次表示-1,-2,-3。 ★相反數(shù)的概念:只有符號不同的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)是0;橄喾磾(shù)的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱。 ★絕對值的概念:一般地,數(shù)軸上表示數(shù)的a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值。記作a。 由絕對值的定義可知:一個(gè)正數(shù)的絕對值是它本身;一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。 ★有理數(shù)比較大。涸跀(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。所以由這個(gè)規(guī)定可知:(1)正數(shù)大于0,0大于負(fù)數(shù);正數(shù)大于負(fù)數(shù);(2)兩個(gè)負(fù)數(shù),絕對值大的反而小。 備注:異號兩數(shù)比較大小,要考慮它們的正負(fù);同號兩數(shù)比較大小,要考慮它們的絕對值。 ★有理數(shù)加法法則: 1、同號兩數(shù)相加,取相同的符號,并把絕對值相加。 2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個(gè)數(shù)相加得0。 3、一個(gè)數(shù)同0相加,仍是這個(gè)數(shù)。 ★有理數(shù)的加法中,兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。加法交換律:a+b=b+a.★有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。加法結(jié)合律:(a+b)+c=a+(b+c)!窘Y(jié)合原則:同號結(jié)合;同分母結(jié)合;互為相反數(shù)結(jié)合;湊整結(jié)合! ★有理數(shù)減法法則:減去一個(gè)數(shù),就等于加上這個(gè)數(shù)的相反數(shù)。即:a-b=a+(-b). ★有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;任何數(shù)同0相乘都得0。 備注:幾個(gè)不是0的數(shù)相乘,負(fù)因數(shù)的個(gè)數(shù)是偶數(shù)時(shí),積是正數(shù);負(fù)因數(shù)的個(gè)數(shù)是奇數(shù)時(shí),積是負(fù)數(shù)。 ★有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù)。 ★一般地,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積不變。乘法交換率:abba;三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積不變。乘法結(jié)合律:(ab)ca(bc)。 ★一般地,一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同中兩個(gè)數(shù)相乘,再把積相加。分配律:a(bc)abac ★有理數(shù)除法法則:除以一個(gè)不等于0的數(shù),等于乘上這個(gè)數(shù)的倒數(shù)。 備注:從有理數(shù)除法法則容易得出:兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個(gè)不等于0的數(shù),都得0。 ★有理數(shù)的乘方:求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。a的n次方也可以讀作a的n次冪。 備注:負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。 正數(shù)的任何次冪都是正數(shù)。0的任何正整數(shù)次冪都是0。 ★有理數(shù)的混合運(yùn)算,應(yīng)注意以下運(yùn)算順序:先乘方,再乘除,最后加減。2。同級運(yùn)算,從左到右依次計(jì)算。3。如有括號,先做括號內(nèi)的運(yùn)算,按小括號、中括號、大括號依次計(jì)算。 ★科學(xué)計(jì)數(shù)法:把一個(gè)大于10的數(shù)表示成ax10(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)) ★近似數(shù)與準(zhǔn)確數(shù)的接近程度,可以用精確度表示。 ★有效數(shù)字:從一個(gè)數(shù)的左邊第一個(gè)非0數(shù)字起,到末位數(shù)字止,所有的數(shù)字都是這個(gè)數(shù)的有效數(shù)字。 第二章:整式的加減(為一元一次方程的學(xué)習(xí)打下基礎(chǔ)) ◆單項(xiàng)式概念:比如100t、a的平方、2.5x、vt,-n,它們都是數(shù)或者字母的積,像這樣的式子叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。單項(xiàng)式中數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。 ◆一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。 ◆多項(xiàng)式的概念:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。其中每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不存在字母的項(xiàng)叫做常數(shù)項(xiàng)。 ◆多項(xiàng)式里次數(shù)最高項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。◆整式的概念:單項(xiàng)式與多項(xiàng)式統(tǒng)稱整式。 ◆同類項(xiàng)概念:所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng)。 ◆把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。 ◆合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)之和,且字母部分不變!羧ダㄌ柗▌t: 如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項(xiàng)的符號與原來的符號相同;如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項(xiàng)的符號與原來的符號相反。 第三章:一元一次方程 ▲含有未知數(shù)的等式叫方程(equation)。 ▲使方程左右兩邊相等的'未知數(shù)的值,叫做方程的解(solution)!缓幸粋(gè)未知數(shù)(元),未知數(shù)的次數(shù)都是1,這樣的方程叫做一元一次方程。▲等式的性質(zhì):1、等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。 2、等式;兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等。▲用一元一次方程分析和解決實(shí)際問題的基本過程如下: (實(shí)際問題)設(shè)未知數(shù),列方程數(shù)學(xué)問題(一元一次方程)解方程(數(shù)學(xué)問題的解)檢驗(yàn)(實(shí)際問題的答案)。 ▲解方程的具體步驟:1、去分母(方程兩邊同乘各分母的最小公倍數(shù));2、去括號(去括號法則);3、移項(xiàng)(定義);4、合并同類項(xiàng)(法則,同類項(xiàng)的定義);5、系數(shù)化為1。 ▲實(shí)際問題與一元一次方程:一元一次方程是最簡單的方程。運(yùn)用方程解決問題的關(guān)鍵是分析問題中的數(shù)量關(guān)系,找出其中的相等關(guān)系,并由此列出方程。 第四章:圖形認(rèn)識的初步 ※我們把從實(shí)物中抽象出的各種圖形統(tǒng)稱為幾何圖形。幾何圖形是數(shù)學(xué)研究的主要對象 之一。幾何圖形又分為立體圖形和平面圖形。 ※長方體、正方體、圓柱、圓錐、球、棱錐等都是幾何體。幾何體也簡稱體(solid)。包圍著體的是面(surface)。面有平面和曲面。 ※幾何圖形都是由點(diǎn)、線、面、體組成的,點(diǎn)是構(gòu)成圖形的基本元素!(jīng)過兩點(diǎn)有一條直線,并且只有一條直線。簡述:兩點(diǎn)確定一條直線。※直線一般用1個(gè)小寫字母表示或者用直線上的兩個(gè)大寫字母表示。※射線和線段都是直線的一部分。類似于直線的表示。 ※兩點(diǎn)的所有連線中,線段最短。簡述:兩點(diǎn)之間,線段最短!B接兩點(diǎn)間的線段的長度,叫做中兩點(diǎn)的距離(distance)。 ※在國際單位制中,長度的基本單位是米(m)。常用的單位還有千米、分米、厘米、毫米、微米等。 1納米等于十億分之一米。 ※在天文學(xué)上,常用天文單位和光年計(jì)算星體間的距離。1天文單位是地球到太陽的平812 均距離,約1.5x10千米,1光年就是光1年走過的距離,約等于9.46x10千米。 ※航海上經(jīng)常用到的長度單位海里(1海里=1852米);※有公共端點(diǎn)的兩條射線組成的圖形叫做角(angle)。這個(gè)公共點(diǎn)叫做角的頂點(diǎn),這兩條射線是角的兩條邊。 ※我們常用量角器量角,度(degree)、分、秒是常用的角的度量單位。 ※角的度、分、秒是60進(jìn)制的。以度、分、秒為單位的角的度量制,叫做角度制!S玫牧拷枪ぞ哂校拷瞧,工程常用的經(jīng)緯儀。 ※從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線,叫做這個(gè)角的平分線。 ※余角(complementaryangle):如果兩個(gè)角的和等于90度(直角),就說中這兩個(gè)角互為余角,即其中每一個(gè)角是另一個(gè)角的余角。余角的性質(zhì):等角的余角相等。 ※補(bǔ)角(supplementaryangle):如果兩個(gè)角的和等于180度(平角),就說這兩個(gè)角互為補(bǔ)角,其中一個(gè)角是另一個(gè)角的補(bǔ)角。補(bǔ)角的性質(zhì):等角的補(bǔ)角相等。 ※上北下南;左西右東。西北,即是北偏西45度。 第五章平行線與相交線 一.臺球桌面上的角 ※1.互為余角和互為補(bǔ)角的有關(guān)概念與性質(zhì) 如果兩個(gè)角的和為90°(或直角),那么這兩個(gè)角互為余角;如果兩個(gè)角的和為180°(或平角),那么這兩個(gè)角互為補(bǔ)角; 注意:這兩個(gè)概念都是對于兩個(gè)角而言的,而且兩個(gè)概念強(qiáng)調(diào)的是兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的相互位置沒有關(guān)系。 它們的主要性質(zhì):同角或等角的余角相等;同角或等角的補(bǔ)角相等。 二.探索直線平行的條件 ※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:①同位角相等,兩直線平行;②內(nèi)錯(cuò)角相等,兩直線平行;③同旁內(nèi)角互補(bǔ),兩直線平行。 三.平行線的特征 ※平行線的特征即平行線的性質(zhì)定理,共有三條:①兩直線平行,同位角相等;②兩直線平行,內(nèi)錯(cuò)角相等;③兩直線平行,同旁內(nèi)角互補(bǔ)。 四.用尺規(guī)作線段和角※ 1.關(guān)于尺規(guī)作圖 尺規(guī)作圖是指只用圓規(guī)和沒有刻度的直尺來作圖。 ※2.關(guān)于尺規(guī)的功能 直尺的功能是:在兩點(diǎn)間連接一條線段;將線段向兩方向延長。 圓規(guī)的功能是:以任意一點(diǎn)為圓心,任意長度為半徑作一個(gè)圓;以任意一點(diǎn)為圓心,任意長度為半徑畫一段弧。 【初一數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章: 數(shù)學(xué)初一知識點(diǎn)總結(jié)07-04 初一數(shù)學(xué)下知識點(diǎn)總結(jié)12-07 初一數(shù)學(xué)下冊知識點(diǎn)總結(jié)11-29 初一數(shù)學(xué)棱錐知識點(diǎn)總結(jié)11-29 初一數(shù)學(xué)知識點(diǎn)的總結(jié)11-07 初一數(shù)學(xué)知識點(diǎn)總結(jié)07-11 初一數(shù)學(xué)上冊知識點(diǎn)總結(jié)11-23 人教版初一數(shù)學(xué)知識點(diǎn)總結(jié)04-24初一數(shù)學(xué)知識點(diǎn)總結(jié)11
初一數(shù)學(xué)知識點(diǎn)總結(jié)12
初一數(shù)學(xué)知識點(diǎn)總結(jié)13
初一數(shù)學(xué)知識點(diǎn)總結(jié)14
初一數(shù)學(xué)知識點(diǎn)總結(jié)15