- 相關(guān)推薦
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案(通用9篇)
作為一名默默奉獻(xiàn)的教育工作者,時常會需要準(zhǔn)備好教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。寫教案需要注意哪些格式呢?以下是小編為大家收集的《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案,歡迎大家分享。
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案 篇1
總課時:
7課時 使用人:
備課時間:
第八周
上課時間:
第十周
第4課時:
5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識與技能
1.在給定的直角坐標(biāo)系下,會根據(jù)坐標(biāo)描出點的位置;
2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點、連線、看圖以及由點找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點確定坐標(biāo)到根據(jù)坐標(biāo)描點的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識。
情感態(tài)度與價值觀
通過生動有趣的教學(xué)活動,發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點:
在已知的直角坐標(biāo)系下找點、連線、觀察,確定圖形的大致形狀。
教學(xué)難點:
在已知的直角坐標(biāo)系下找點、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點)
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點的'連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點的坐標(biāo)有什么特點。
練習(xí):指出下列 各點以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點找坐標(biāo)是已知點在直角坐標(biāo) 系中的位置,根據(jù)這點在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點,你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點,并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個平面直角坐標(biāo)系中,描出下列各組內(nèi)的點用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨立完成。
(學(xué)生描點、畫圖)
(拿出一位做對的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨立完成,后小組討論)
(補充)1.在直角坐標(biāo)系中描出下列各點,并將各組內(nèi)的點用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。
先獨立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案 篇2
第1課時
1.1.1平面直角坐標(biāo)系(一)
學(xué)習(xí)目標(biāo)
1.回顧在平面直角坐標(biāo)系中刻畫點的位置的方法.
2. 能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題.
學(xué)習(xí)過程
一、學(xué)前準(zhǔn)備
1、通過直角坐標(biāo)系,平面上的 與 ( ),曲線與 建立了聯(lián)系,實現(xiàn)了 。
2、閱讀P3思考得出在直角坐標(biāo)系中解決實際問題的過程是:
二、新課導(dǎo)學(xué)
◆探究新知(預(yù)習(xí)教材P1~P4,找出疑惑之處)
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創(chuàng)建坐標(biāo)系?
問題3:(1).如何把平面內(nèi)的點與有序?qū)崝?shù)對(x,y)建立聯(lián)系?(2).平面直角坐標(biāo)系中點和有序?qū)崝?shù)對(x,y)是怎樣的關(guān)系?
問題4:如何研究曲線與方程間的關(guān)系?結(jié)合課本例子說明曲線與方程的關(guān)系?
問題5:如何刻畫一個幾何圖形的位置?
需要設(shè)定一個參照系
(1)、數(shù)軸 它使直線上任一點P都可以由惟一的實數(shù)x確定
(2)、平面直角坐標(biāo)系 :在平面上,當(dāng)取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點P都可以由惟一的實數(shù)對(x,y)確定
(3)、空間直角坐標(biāo)系 :在空間中,選擇兩兩垂直且交于一點的三條直線,當(dāng)取定這三條直線的`交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點P都可以由惟一的實數(shù)對(x,y,z)確定
(4)、抽象概括:在平面直角坐標(biāo)系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:A.曲線C上的點坐標(biāo)都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標(biāo)的點都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。
問題6:如何建系?
根據(jù)幾何特點選擇適當(dāng)?shù)闹苯亲鴺?biāo)系。
(1)如果圖形有對稱中心,可以選對稱中心為坐標(biāo)原點;
(2)如果圖形有對稱軸,可以選擇對稱軸為坐標(biāo)軸;
(3)使圖形上的特殊點盡可能多的在坐標(biāo)軸上。
◆應(yīng)用示例
例1.已知△ABC的三邊 滿足 ,BE,CF分別為AC,AB上的中線,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系探究BE和CF的位置關(guān)系。(教材P4例1)
◆反饋練習(xí)
1.兩個定點的距離為6,點M到這兩個定點的距離的平方和為26,求點M的軌跡。
解:
三、總結(jié)提升
◆本節(jié)小結(jié)
1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?
答:建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題
學(xué)習(xí)評價
一、自我評價
你完成本節(jié)導(dǎo)學(xué)案的情況為( )
A.很好 B.較好 C. 一般 D.較差
課后作業(yè)
1. 已知點A為定點,線段BC在定直線 上滑動,已知 ,點A到直線 的距離為3,求△ABC的外心的軌跡方程。
2. (選做題)用兩種以上的方法證明:三角形的三條高線交于一點。
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案 篇3
一、學(xué)生起點分析
《平面直角坐標(biāo)系》是八年級上冊第五章《位置與坐標(biāo)》第二節(jié)內(nèi)容。本章是“圖形與坐標(biāo)”的主體內(nèi)容,不僅呈現(xiàn)了“確定位置的多種方法、平面直角坐標(biāo)系”等內(nèi)容,而且也從坐標(biāo)的角度使學(xué)生進(jìn)一步體會圖形平移、軸對稱的數(shù)學(xué)內(nèi)涵,同時又是一次函數(shù)的重要基礎(chǔ)!镀矫嬷苯亲鴺(biāo)系》反映平面直角坐標(biāo)系與現(xiàn)實世界的密切聯(lián)系,讓學(xué)生認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系和對人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動的積極性和好奇心。因此,教學(xué)過程中創(chuàng)設(shè)生動活潑、直觀形象、且貼近他們生活的問題情境,會引起學(xué)生的極大關(guān)注,會有利于學(xué)生對內(nèi)容的較深層次的理解;另一方面,學(xué)生已經(jīng)具備了一定的學(xué)習(xí)能力,可多為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機會,促使他們主動參與、積極探究。
二、教學(xué)任務(wù)分析
教學(xué)目標(biāo)設(shè)計:
知識目標(biāo):
1、理解平面直角坐標(biāo)系以及橫軸、縱軸、原點、坐標(biāo)等概念;
2、認(rèn)識并能畫出平面直角坐標(biāo)系;
3、能在給定的直角坐標(biāo)系中,由點的位置寫出它的坐標(biāo)。
能力目標(biāo):
1、通過畫坐標(biāo)系、由點找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合意識、合作交流意識;
2、通過對一些點的坐標(biāo)進(jìn)行觀察,探索坐標(biāo)軸上點的坐標(biāo)有什么特點,縱坐標(biāo)或橫坐標(biāo)相同的點所連成的線段與兩坐標(biāo)軸之間的關(guān)系,培養(yǎng)學(xué)生的探索意識和能力。
情感目標(biāo):
由平面直角坐標(biāo)系的有關(guān)內(nèi)容,以及由點找坐標(biāo),反映平面直角坐標(biāo)系與現(xiàn)實世界的密切聯(lián)系,讓學(xué)生認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系和對人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動的積極性和好奇心。
教學(xué)重點:
1、理解平面直角坐標(biāo)系的有關(guān)知識;
2、在給定的平面直角坐標(biāo)系中,會根據(jù)點的位置寫出它的坐標(biāo);
3、由觀察點的坐標(biāo)、縱坐標(biāo)或橫坐標(biāo)相同的點所連成的線段與兩坐標(biāo)軸之間的關(guān)系,說明坐標(biāo)軸上點的坐標(biāo)有什么特點。
教學(xué)難點:
1、橫(或縱)坐標(biāo)相同的點的連線與坐標(biāo)軸的關(guān)系的探究;
2、坐標(biāo)軸上點的坐標(biāo)有什么特點的總結(jié)。
三、教學(xué)過程設(shè)計
第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課
同學(xué)們,你們喜歡旅游嗎?假如你到了某一個城市旅游,那么你應(yīng)怎樣確定旅游景點的位置呢?下面給出一張某市旅游景點的示意圖,根據(jù)示意圖(圖5— 6),回答以下問題:
。1)你是怎樣確定各個景點位置的?
。2)“大成殿”在“中心廣場”南、西各多少個格?“碑林”在“中心廣場”北、東各多少個格?
。3)如果以“中心廣場”為原點作兩條互相垂直的數(shù)軸,分別取向右、向上的方向為數(shù)軸的正方向,一個方格的邊長看做一個單位長度,那么你能表示“碑林”的位置嗎?“大成殿”的位置呢?
在上一節(jié)課,我們已經(jīng)學(xué)習(xí)了許多確定位置的方法,這個問題中,大家看用哪種方法比較合適?
第二環(huán)節(jié)分類討論,探索新知
1、平面直角坐標(biāo)系、橫軸、縱軸、橫坐標(biāo)、縱坐標(biāo)、原點的定義和象限的劃分。
學(xué)生自學(xué)課本,理解上述概念。
2、例題講解
(出示投影)例1
例1寫出圖中的多邊形ABCDEF各頂點的坐標(biāo)。
3.2平面直角坐標(biāo)系:課后練習(xí)
一、選擇題(共9小題,每小題3分,滿分27分)
1、若點A(﹣2,n)在x軸上,則點B(n﹣1,n+1)在()
A、第四象限B、第三象限C、第二象限D(zhuǎn)、第一象限
【考點】點的坐標(biāo)。
【專題】計算題。
【分析】由點在x軸的條件是縱坐標(biāo)為0,得出點A(﹣2,n)的n=0,再代入求出點B的坐標(biāo)及象限。
【解答】解:∵點A(﹣2,n)在x軸上,
∴n=0,
∴點B的坐標(biāo)為(﹣1,1)。
則點B(n﹣1,n+1)在第二象限。
故選C。
【點評】本題主要考查點的`坐標(biāo)問題,解決本題的關(guān)鍵是掌握好四個象限的點的坐標(biāo)的特征:第一象限正正,第二象限負(fù)正,第三象限負(fù)負(fù),第四象限正負(fù)。
2、已知點M到x軸的距離為3,到y(tǒng)軸的距離為2,且在第三象限。則M點的坐標(biāo)為()
A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)
【考點】點的坐標(biāo)。
【分析】根據(jù)到坐標(biāo)軸的距離判斷出橫坐標(biāo)與縱坐標(biāo)的長度,再根據(jù)第三象限的點的坐標(biāo)特征解答。
【解答】解:∵點M到x軸的距離為3,
∴縱坐標(biāo)的長度為3,
∵到y(tǒng)軸的距離為2,
∴橫坐標(biāo)的長度為2,
∵點M在第三象限,
∴點M的坐標(biāo)為(﹣2,﹣3)。
故選D。
【點評】本題考查了點的坐標(biāo),難點在于到y(tǒng)軸的距離為橫坐標(biāo)的長度,到x軸的距離為縱坐標(biāo)的長度,這是同學(xué)們?nèi)菀谆煜鴮?dǎo)致出錯的地方。
3.2平面直角坐標(biāo)系同步測試題
1.點A(3,—1)其中橫坐標(biāo)為XX,縱坐標(biāo)為XX。
2.過B點向x軸作垂線,垂足點坐標(biāo)為—2,向y軸作垂線,垂足點坐標(biāo)為5,則點B的坐標(biāo)為。
3.點P(—3,5)到x軸距離為XX,到y(tǒng)軸距離為XX。
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案 篇4
一、教學(xué)目標(biāo)
1、知識與技能目標(biāo):認(rèn)識平面直角坐標(biāo)系,了解點與坐標(biāo)的對應(yīng)關(guān)系;
2、過程與方法目標(biāo):通過研究平面直角坐標(biāo)中數(shù)與點的對應(yīng)關(guān)系,能根據(jù)坐標(biāo)描出點的位置;
3、情感態(tài)度與價值觀目標(biāo):感受代數(shù)與幾何問題的相互轉(zhuǎn)換。體會品面直角坐標(biāo)系在解決實際問題的作用,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。
二、教學(xué)重難點
重點:理解平面直角坐標(biāo)中點與數(shù)的一一對應(yīng)關(guān)系;
難點:根據(jù)坐標(biāo)描出點的位置,以及坐標(biāo)軸上的點的坐標(biāo)特點。
三、教學(xué)用具
教師準(zhǔn)備四張大的紙質(zhì)坐標(biāo)格子。
四、教學(xué)過程
(一)溫故知新,導(dǎo)入新課
游戲?qū)耄荷弦还?jié)課我們學(xué)習(xí)了有序數(shù)對,大家學(xué)習(xí)積極性很高,今天老師先考考你們, 看你們掌握了多少。
我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學(xué)們先找準(zhǔn)自己的數(shù)對號。聽老師報數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應(yīng)太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。
我們可以發(fā)現(xiàn),通過教室平面內(nèi)的有序數(shù)對,可以唯一的確定與之對應(yīng)的同學(xué)。
(二)新課教學(xué)
課本例子:我們知道數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標(biāo)。例如點A數(shù)軸上的坐標(biāo)是-4,點B數(shù)軸上的坐標(biāo)是2;我們說坐標(biāo)是3.5的點,也可以在數(shù)軸上唯一確定。
教師提問1:類似于數(shù)軸確定直線上點的位置,能不能找到一種方法來確定平面內(nèi)點的位置呢?平面內(nèi)給出任意點A、B、C、D,我們怎么確定這些點的位置
學(xué)生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小B說我們可以每個點列一個數(shù)軸···
教師活動:引導(dǎo)學(xué)生思考,怎么才能用同一標(biāo)準(zhǔn),方便的確定每一點的位置?
結(jié)合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個橫縱的數(shù)軸?
得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系,水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
那有了這樣的平面直角坐標(biāo)系,平面內(nèi)的點就可以用之前學(xué)的有序數(shù)對來表示了。例如:由A分別向x軸和y軸作垂線。垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是4,我們說A的坐標(biāo)是3,縱坐標(biāo)是4,有序數(shù)對(3,4)就叫做A的坐標(biāo),記作A(3,4)
教師提問2:同學(xué)們按照這種做法,在坐標(biāo)紙上標(biāo)出B、C、D的坐標(biāo)。
教師活動:走下講臺,關(guān)注學(xué)生的.匯坐標(biāo)過程方法,指出學(xué)生出現(xiàn)問題的地方,并予以改正。
教師提問3:在橫縱坐標(biāo)軸上各標(biāo)一點E、F,問:坐標(biāo)原點以及這兩點的坐標(biāo)是什么?
教師活動:引導(dǎo)學(xué)生思考?xì)w納坐標(biāo)軸上的點的坐標(biāo)的特點。
得出結(jié)論:原點的坐標(biāo)是(0,0),x軸上的點的坐標(biāo)的縱坐標(biāo)為0;y軸上的點的坐標(biāo)的橫坐標(biāo)為0。
(三)課程鞏固
師生互動:與學(xué)生一起回憶平面直角坐標(biāo)系的各部分的意義,平面內(nèi)的點怎么對應(yīng)坐標(biāo),以及坐標(biāo)軸上的點的坐標(biāo)特點。
“練一練”:
在黑板上貼出四張事先準(zhǔn)備好的紙質(zhì)坐標(biāo)格子,在上面標(biāo)出任意的ABCDEFG等點,每組我點一個按坐標(biāo)序列對,對應(yīng)的同學(xué)上黑板,來描出各點的坐標(biāo)。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學(xué)生不能提示,提示一次扣2分。比賽看哪組學(xué)生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同學(xué)上黑板來描點。
教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚,表現(xiàn)稍遜的學(xué)生不要氣餒,給予鼓勵,爭取下一次可以獲勝。
(四)小結(jié)作業(yè)
思考平面直角坐標(biāo)系中坐標(biāo)與點的對應(yīng)關(guān)系,如何由坐標(biāo)值確定點的位置。下節(jié)課我們會探討這個問題。
五、板書設(shè)計
平面直角坐標(biāo)系:平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸組成
水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;
豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;
兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案 篇5
[教學(xué)目標(biāo)]
1. 認(rèn)識平面直角坐標(biāo)系,了解點的坐標(biāo)的意義,會用坐標(biāo)表示點,能畫出點的坐標(biāo)位
2. 滲透對應(yīng)關(guān)系,提高學(xué)生的數(shù)感.
[教學(xué)重點與難點]
重點:平面直角坐標(biāo)系和點的坐標(biāo).
難點:正確畫坐標(biāo)和找對應(yīng)點.
[教學(xué)設(shè)計]
[設(shè)計說明]
一.利用已有知識,引入
1.如圖,怎樣說明數(shù)軸上點A和點B的位置,
2.根據(jù)下圖,你能正確說出各個象棋子的位置嗎?
二.明確概念
平面直角坐標(biāo)系:平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系(rectangular coordinate system).水平的數(shù)軸稱為x軸(x-axis)或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸為y軸(y-axis)或縱軸,取向上方向為
由數(shù)軸的表示引入,到兩個數(shù)軸和有序數(shù)對。
從學(xué)生熟悉的物品入手,引申到平面直角坐標(biāo)系。
描述平面直角坐標(biāo)系特征和畫法
正方向;兩個坐標(biāo)軸的.交點為平面直角坐標(biāo)系的原點。
點的坐標(biāo):我們用一對有序數(shù)對表示平面上的點,這對數(shù)叫坐標(biāo)。表示方法為(a,b).a是點對應(yīng)橫軸上的數(shù)值,b是點在縱軸上對應(yīng)的數(shù)值。
例1 寫出圖中A、B、C、D點的坐標(biāo)。
建立平面直角坐標(biāo)系后,平面被坐標(biāo)軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限。
你能說出例1中各點在第幾象限嗎?
例2 在平面直角坐標(biāo)系中描出下列各點。
。ǎ〢(3,4);B(-1,2);C(-3,-2);D(2,-2)
問題1:各象限點的坐標(biāo)有什么特征?
練習(xí):教材49頁:練習(xí)1,2。
三.深入探索
教材48頁:探索:
識別坐標(biāo)和點的位置關(guān)系,以及由坐標(biāo)判斷兩點的關(guān)系以及兩點所確定的直線的位置關(guān)系。
[鞏固練習(xí)]
1. 教材49頁習(xí)題6.1——第1題
2. 教材50頁——第2,4,5,6。
[小結(jié)]
1. 平面直角坐標(biāo)系;
2. 點的坐標(biāo)及其表示
3. 各象限內(nèi)點的坐標(biāo)的特征
4. 坐標(biāo)的簡單應(yīng)用
[作業(yè)]
必做題:教科書50頁:3題
。ń滩51頁綜合運用7,8,9,10為練習(xí)課內(nèi)容)
明確點的坐標(biāo)的表示法
仿照例題,畫坐標(biāo)軸,描點,要求能正確畫平面直角坐標(biāo)系
通過探究,發(fā)現(xiàn)坐標(biāo)不但能代表點的位置,而且能反映他所在的直線的特征
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案 篇6
教學(xué)目標(biāo):
1.理解平面直角坐標(biāo)系中的伸縮變換;
2.了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況;
3.會用坐標(biāo)變換、伸縮變換解決實際問題,體驗用數(shù)學(xué)知識解釋生活問題的樂趣。
教學(xué)重點:
理解平面直角坐標(biāo)系中的伸縮變換。
教學(xué)難點:
會用坐標(biāo)變換、伸縮變換解決實際問題。
授課類型:
新授課
教學(xué)過程:
一.復(fù)習(xí)引入
在三角函數(shù)圖象的學(xué)習(xí)中,我們研究過下面一些問題:
。1)怎樣由正弦曲線y=sinx得到曲線y=sin2x和y=sin?
(2)怎樣由正弦曲線y=sinx得到曲線y=2sinx和y=sinx?
作圖:
二.新課講解
引導(dǎo),觀察啟發(fā)與y=sinx的圖象作比較,結(jié)論:
1.函數(shù)y=sinωx,x?R(ω>0且ω11)的.圖象,可看作把正弦曲線上所有點的橫坐標(biāo)縮短(ω>1)或伸長(0<ω<1)到原來的倍(縱坐標(biāo)不變)。
2.y=Asinx,x?R(A>0且A11)的圖象可以看作把正數(shù)曲線上的所有點的縱坐標(biāo)伸長(A>1)或縮短(0設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點,保持縱坐標(biāo)y不變,將橫坐標(biāo)x縮為原來的倍,得到P’(x’,y’),那么 ①
我們把①式叫做平面直角坐標(biāo)系中的一個坐標(biāo)壓縮變換。
設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點,保持橫坐標(biāo)x不變,將縱坐標(biāo)y伸長為原來的2倍,得到P’(x’,y’),那么 ②
我們把②式叫做平面直角坐標(biāo)系中的一個坐標(biāo)伸長變換。
提出問題:怎樣由正弦曲線得到曲線y=2sin2x?(它是由①②兩種變換合成的)
平面直角坐標(biāo)系中的任意一點P(x,y),經(jīng)過上述變換后變?yōu)辄cP’(x’,y’),那么 ③
我們把③式叫做平面直角坐標(biāo)系中的坐標(biāo)伸縮變換。
定義:設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點,在變換 ④的作用下,點P(x,y)對應(yīng)到點P’(x’,y’),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換。
三.例題講解
例1在平面直角坐標(biāo)系中,求下列方程所對應(yīng)的圖形經(jīng)過伸縮變換后的圖形。
(1)2x+3y=0
。2)x2+y2=1
四.課堂練習(xí)
課本P8第4題
五.課堂小結(jié)
設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點,在變換 ④的作用下,點P(x,y)對應(yīng)到點P’(x’,y’),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換。
六.作業(yè)布置
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案 篇7
教學(xué)目標(biāo):
1、通過現(xiàn)實情景感受利用有序數(shù)對表示位置的廣泛性,能利用有序數(shù)對來表示位置。
2、讓學(xué)生感受到可以用數(shù)量表示圖形位置,幾何問題可以轉(zhuǎn)化為代數(shù)問題,形成數(shù)形結(jié)合的意識。
教學(xué)重點:
理解有序數(shù)對的概念,用有序數(shù)對來表示位置。
教學(xué)難點:
理解有序數(shù)對是“有序的”并用它解決實際問題,課時安排:1課時
教學(xué)過程
一、創(chuàng)設(shè)問題情境,引入新課
展示書P105畫面并提出問題,在建國50周年的慶典活動中,天安門廣場上出現(xiàn)了壯觀的背景圖案,你知道它是怎么組成的嗎?
原來,他們舉起不同顏色的花束(如第10排第25列舉紅花,第28排第30列舉黃花)整個方陣就組成了絢麗的背景圖章。類似用“第幾排第幾列”來確定同學(xué)的位置,我們在日常生活中經(jīng)常用的方法。
二、師生共同參于教學(xué)活動
。1)影院對觀眾席所有的座位都按“幾排幾號”編號,以便確定每個座位在影院中的位置觀眾根據(jù)入場券上的“排數(shù)”和“號數(shù)”準(zhǔn)確入座。
師:只給一個數(shù)據(jù)如“第5號”你能確定某個同學(xué)的`位置嗎?為什么?要確定必須怎樣?
生:不能,要確定還必須知道“排數(shù)”。
(2)教師書寫平面圖通知,由學(xué)生分組討論。
今天以下座位的同學(xué)放學(xué)后參加數(shù)學(xué)問題討論:(1,5), (2,4),(4,2),(3,3),(5,6)。
師:你們能明白它的意思嗎?
學(xué)生通過交流合作后得到共識:規(guī)定了兩個數(shù)所表示的含義后就可以表示座位的位置。
師:請同學(xué)們思考以下問題:
、僭鯓哟_定你自己的座位的位置?
、谂艛(shù)和列數(shù)先后須序?qū)ξ恢糜杏绊憜幔?/p>
生:通過討論,交流后得到以下共識:
、倏捎门艛(shù)和列數(shù)兩個不同的數(shù)來確定位置。
、谂艛(shù)和列數(shù)的先后須序?qū)ξ恢糜杏绊憽?/p>
。3)讓學(xué)生的問題都是通過像“9排8號”,第2列第4排,這樣含有兩個數(shù)的詞來表示一個確定的位置,其中兩個數(shù)各自表示不同的含義。例如前面的表示“排數(shù)”后面的表示“列數(shù)”。我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)。
。4)在生活中還有用有序數(shù)對表示一個位置的例子嗎?
學(xué)生分組討論,交流,教師深入小組參與活動,傾聽學(xué)生的交流,并對學(xué)生提供的生活素材給予肯定和鼓勵。
例如:人們常用經(jīng)緯度來表示,地球上的地點
三、鞏固練習(xí)
讓學(xué)生完成p46的練習(xí)。
四、布置作業(yè)
1、課本習(xí)題6,1,1。
2、“怪獸吃豆豆”是一種計算機游戲,圖中標(biāo)志表示“怪獸”按圖中箭頭先后經(jīng)過的幾個位置,如果用(1,2)表示“怪獸”按圖中箭頭所指路線經(jīng)過的第3個位置,那么你能用同樣的方式表示出圖中“怪獸”經(jīng)過的其他幾個位置嗎?
1 2 3 4 5 6 7 8
五、教后反思
師:談?wù)劚竟?jié)課,你有哪些收獲?
由同學(xué)交流解決問題,教師設(shè)疑為以后的學(xué)習(xí)奠定基礎(chǔ)。
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案 篇8
學(xué)習(xí)目標(biāo):
1.探索并掌握對稱點的坐標(biāo)關(guān)系。
2.進(jìn)一步理解點的坐標(biāo)的數(shù)值變化與點的位置變化的關(guān)系。
象限第一第二第三第四
符號(+,+
一、本課要點:
1.各象限點的符號特征:
x軸上的點,坐標(biāo)為0;y軸上的點,坐標(biāo)為0
2.點的坐標(biāo)特征:
(1)平行于坐標(biāo)軸的直線上的點:平行于x軸的直線上不同的兩個點的坐標(biāo)相同,坐標(biāo)不同;平行于y軸的直線上不同的兩個點的坐標(biāo)相同,坐標(biāo)不同。
(2)象限角平分線上的點:第一、三象限角平分線上的點的橫、縱坐標(biāo),可表示為(x,x);第二、四象限角平分線上的點的橫、縱坐標(biāo),可表示為( )。
(3)對稱的點P(a,b)
關(guān)于x軸對稱的點的坐標(biāo)為,關(guān)于y軸對稱的點的坐標(biāo)為,關(guān)于原點對稱的點的坐標(biāo)為。
3.圖形變換后點的坐標(biāo)特征:
圖形左右平移,對應(yīng)點的坐標(biāo)變化,坐標(biāo)不變;圖形上下平移,對應(yīng)點的坐標(biāo)變化,坐標(biāo)不變
二、典型例題:
例1.完成課本實驗室操作要求。
例2.已知平面直角坐標(biāo)系中兩點A(x,1)、B(-5,y)
(1)若點A、B關(guān)于x軸對稱,則x=____,y=____;
(2)若點A、B關(guān)于y軸對稱,則x=____,y=_____;
(3)若點A、B關(guān)于原點對稱,則x=____,y=_____
例3.已知點P(2m-5,m-1),當(dāng)m為何值時:
(1)點P在二、四象限的角平分線上;
(2)點P在一、三象限的角平分線上
例4.如圖所示,在直角坐標(biāo)系中,圖(1)中的圖案“A”經(jīng)過變換分別變成圖(2)至圖(6)中的相應(yīng)圖案(虛線對應(yīng)于原圖案).試寫出圖(2)至圖(6)中各頂點的坐標(biāo),探索每次變換前后圖案發(fā)生了什么變化,對應(yīng)點的坐標(biāo)之間有什么關(guān)系?
三、練習(xí):
1.點(-3,4)在第象限,它到x軸的距離為,到y(tǒng)軸的距離為。
2.點A在第四象限,它到x軸的距離為2,到y(tǒng)軸的距離為1,則A的坐標(biāo)為
;點B在x軸上方,它到x軸的距離為2,到y(tǒng)軸的距離為1,則點B的坐標(biāo)為。
3.點M(4,0)到點(-1,0)的距離是;點P(-5,12)到原點的距離是。
4.點P(m,-2m)在第二象限,則點m的取值范圍是。
5.已知A、B、C 3點的坐標(biāo)分別是(0,0),(5,0),(5,3),且這3點是一個平行四邊形的頂點,請同學(xué)們寫出第四點D的.坐標(biāo)
6.點A(-2,-1)關(guān)于x軸的對稱點坐標(biāo)是______,關(guān)于y軸的對稱點是,關(guān)于原點的對稱點是。
7.點B關(guān)于x軸的對稱點是(4,-2),則點B關(guān)于原點的對稱點是。
8.已知三角形的三個頂點分別是(0,0),(3,0),(3,-3),則這個三角形是_____三角形,它的面積等于。
9.若點P(2,a)和點Q(b,-3)關(guān)于x軸對稱,則a+b的值為
10.將點向左平移1個單位,再向下平移2個單位后得到對應(yīng)點的坐標(biāo)是.
11.過點(-2,3)且平行于y軸的直線上的點 ( )
A.橫坐標(biāo)都是-2; B.縱坐標(biāo)都是3 C.橫坐標(biāo)都是3;D.縱坐標(biāo)都是-2
12.在平面直角坐標(biāo)系中,將點A(1,2)的橫坐標(biāo)乘以-1,縱坐標(biāo)不變,得到點A,則點A與點A的關(guān)系是()
A、關(guān)于x軸對稱B、關(guān)于y軸對稱
C、關(guān)于原點對稱D、將點A向x軸負(fù)方向平移一個單位得點A
13.四邊形ABCD的4個頂點分別為A(1,-2)、B(5,-4)、C(4,-1)、D(3,-1),把ABCD向左平移3個單位,再向上平移4個單位,得到的四邊形記為,請在同一坐標(biāo)系中畫出它們的圖形,并寫出點、、、的坐標(biāo)。
14.如圖在平面直角坐標(biāo)系中,A(-1,5),B(-1,0),C(-4,3).
(1)求出△ABC的面積.
(2)在圖5中作出△ABC關(guān)于軸的對稱圖形△A1B1C1.
(3)寫出點A1、B1、C1的坐標(biāo).
15.如圖,我們給中國象棋棋盤建立一個平面直角坐標(biāo)系(每個小正方形的邊長均為1),根據(jù)象棋中“馬”走“日”的規(guī)定,若“馬”的位置在圖中的點P.
(1)寫出下一步“馬”可能到達(dá)的點的坐標(biāo)
;
(2)順次連接⑴中的所有點,得到的圖形是
圖形(填“中心對稱”、“旋轉(zhuǎn)對稱”、“軸對稱”);
(3)指出(1)中關(guān)于點P成中心對稱的點 ..
《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案 篇9
學(xué)習(xí)目標(biāo):
1.會正確畫出平面直角坐標(biāo)系.
2.會在給定的直角坐標(biāo)系中,根據(jù)點的坐標(biāo)描出點的位置,會由點的位置寫出點的坐標(biāo).
學(xué)習(xí)重點:
1、會正確畫出平面直角坐標(biāo)系
2、會由點的坐標(biāo)描出點的位置,會由點的位置寫出點的坐標(biāo).
自學(xué)課本后完成以下測試:
一、填空題:
1.平面上且有的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系。稱為X軸,稱為Y軸,稱為坐標(biāo)原點。
2.平面直角坐標(biāo)系中,一對有序?qū)崝?shù)對可以確定點的位置;反之,任意一點的位置都可以用有序?qū)崝?shù)對來表示。叫做點的坐標(biāo)。點P的坐標(biāo)為(a,b),其中a稱為點P的,b稱為點P的。坐標(biāo)寫在坐標(biāo)的'前面。
3.兩條坐標(biāo)軸將平面分成個區(qū)域稱為象限。按順序分別記為第一、二、三、四象限。坐標(biāo)軸上的點任何象限。
4.若電影院座位中的8排10號用(8,10),那么10排8座可用表示,(5,4)指排座。
5.點A(一l,4)在第象限,B(-1,一4)在第象限;點C(1,-4)在第象限,D(1,4)在第象限;點E(-2,0)在軸上,點F(0,2)在軸上
6.已知點A(a,b).若點A在第一象限,則a_0,b_0。 若點A在第二象限,則a_0,b_0。若點A在第三象限,則a_0,b_0。若點A在第四象限,則a_0,b_0;若點A在x軸的負(fù)半軸上,則a_0,b_0。若點A在y軸的正半軸上,則a_0,b_0。
7.已知P點坐標(biāo)為(2a+1,a-3)
(1)點P在x軸上,則a=;(2)點P在y軸上,則a=;
(3)點P在第三象限內(nèi),則a的取值范圍是;
(4)點P在第四象限內(nèi),則a的取值范圍是。
二、選擇題
8.在平面直角坐標(biāo)系中,點P(-1,2)的位置在()
A、第一象限B、第二象限C、第三象限D(zhuǎn)、第四象限
9.點在第二象限,則的取值范圍是()
A.B.C.D.
10.對任意實數(shù),點一定不在()
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
11.如圖1,下列各點在陰影區(qū)域內(nèi)的是()
A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)
12.在直角坐標(biāo)系中,點在第一象限內(nèi),且與軸正半軸的夾角為,則的值是()
(A)(B)(C)8(D)2
三、解答題
13.如圖在直角坐標(biāo)系中,寫出點出下列各點的坐標(biāo)。
[14..在直角坐標(biāo)系中,描出下列各點的位置:
A(1,2);B();C(4,4);
D();E(0,3)
15.(1)已知點A(a+1,a2-4)在x軸的正半軸上,求A的坐標(biāo)。
(2)已知點B(a,3),點C(-2,b),直線BC平行于y軸,求a的值,并確定b的取值范圍。
【《平面直角坐標(biāo)系》八年級數(shù)學(xué)教案】相關(guān)文章:
人教版《7.1.2 平面直角坐標(biāo)系》教案范文11-17
Excel表格中如何制作平面直角坐標(biāo)系10-27
Excel表格中怎么制作平面直角坐標(biāo)系05-20
八年級數(shù)學(xué)《平面直角坐標(biāo)系2》教學(xué)設(shè)計05-10
八年級數(shù)學(xué)《平面直角坐標(biāo)系》教學(xué)設(shè)計(精選10篇)09-18
七年級下冊平面直角坐標(biāo)系教案10-07