欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

教案

整式的乘除與因式分解全單元的教案

時(shí)間:2025-03-23 03:52:53 教案 我要投稿
  • 相關(guān)推薦

整式的乘除與因式分解全單元的教案范文

  第十五章 整式的乘除與因式分解

整式的乘除與因式分解全單元的教案范文

  15.1.1 整式

  教學(xué)目標(biāo)

  1.單項(xiàng)式、單項(xiàng)式的定義.

  2.多項(xiàng)式、多項(xiàng)式的次數(shù).

  3、理解整式概念.

  教學(xué)重點(diǎn)

  單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

  教學(xué)難點(diǎn)

  單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

  教學(xué)過程

  Ⅰ.提出問題,創(chuàng)設(shè)情境

  在七年級,我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問題

  1.要表示△ABC的周長需要什么條件?要表示它的面積呢?

  2.小王用七小時(shí)行駛了Skm的路程,請問他的平均速度是多少?

  結(jié)論:

  1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.

  2.小王的平均速度是 .

  問題:這些式子有什么特征呢?

 。1)有數(shù)字、有表示數(shù)字的字母.

 。2)數(shù)字與字母、字母與字母之間還有運(yùn)算符號連接.

  歸納:用基本的運(yùn)算符號(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.

  判斷上面得到的三個(gè)式子:a+b+c、 ch、 是不是代數(shù)式?(是)

  代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來學(xué)習(xí)和代數(shù)式有關(guān)的整式.

 、颍鞔_和鞏固整式有關(guān)概念

 。ǔ鍪就队埃

  結(jié)論:(1)正方形的周長:4x.

 。2)汽車走過的路程:vt.

 。3)正方體有六個(gè)面,每個(gè)面都是正方形,這六個(gè)正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.

 。4)n的相反數(shù)是-n.

  分析這四個(gè)數(shù)的特征.

  它們符合代數(shù)式的定義.這五個(gè)式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運(yùn)算符號.還可以發(fā)現(xiàn)這五個(gè)代數(shù)式中字母指數(shù)各不相同,字母的個(gè)數(shù)也不盡相同.

  請同學(xué)們閱讀課本P160~P161單項(xiàng)式有關(guān)概念.

  根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的,寫出它的系數(shù)和次數(shù).

  結(jié)論:4x、vt、6a2、a3、-n、 ch是單項(xiàng)式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項(xiàng)式;vt、6a2、 ch都是二次單項(xiàng)式;a3是三次單項(xiàng)式.

  問題:vt中v和t的指數(shù)都是1,它不是一次單項(xiàng)式嗎?

  結(jié)論:不是.根據(jù)定義,單項(xiàng)式vt中含有兩個(gè)字母,所以它的次數(shù)應(yīng)該是這兩個(gè)字母的指數(shù)的和,而不是單個(gè)字母的指數(shù),所以vt是二次單項(xiàng)式而不是一次單項(xiàng)式.

  生活中不僅僅有單項(xiàng)式,像a+b+c,它不是單項(xiàng)式,和單項(xiàng)式有什么聯(lián)系呢?

  寫出下列式子(出示投影)

  結(jié)論:(1)t-5.(2)3x+5y+2z.

 。3)三角尺的面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.

 。4)建筑面積等于四個(gè)矩形的面積之和.而右邊兩個(gè)已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.

  我們可以觀察下列代數(shù)式:

  a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項(xiàng)式的和組成的式子.是多個(gè)單項(xiàng)式的和,能不能叫多項(xiàng)式?

  這樣推理合情合理.請看投影,熟悉下列概念.

  根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請分別指出它們的項(xiàng)和次數(shù).

  a+b+c的項(xiàng)分別是a、b、c.

  t-5的項(xiàng)分別是t、-5,其中-5是常數(shù)項(xiàng).

  3x+5y+2z的項(xiàng)分別是3x、5y、2z.

  ab-3.12r2的項(xiàng)分別是 ab、-3.12r2.

  x2+2x+18的項(xiàng)分別是x2、2x、18. 找多項(xiàng)式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個(gè)項(xiàng)的次數(shù),二是取每個(gè)項(xiàng)次數(shù)的最大值.根據(jù)這兩條很容易得到這五個(gè)多項(xiàng)式中前三個(gè)是一次多項(xiàng)式,后兩個(gè)是二次多項(xiàng)式.

  這節(jié)課,通過探究我們得到單項(xiàng)式和多項(xiàng)式的有關(guān)概念,它們可以反映變化的世界.同時(shí),我們也到符號的魅力所在.我們把單項(xiàng)式與多項(xiàng)式統(tǒng)稱為整式.

 、螅S堂練習(xí)

  1.課本P162練習(xí)

  Ⅳ.課時(shí)小結(jié)

  通過探究,我們了解了整式的概念.理解并掌握單項(xiàng)式、多項(xiàng)式的有關(guān)概念是本節(jié)的重點(diǎn),特別是它們的次數(shù).在現(xiàn)實(shí)情景中進(jìn)一步理解了用字母表示數(shù)的意義,發(fā)展符號感.

 、酰n后作業(yè)

  1.課本P165~P166習(xí)題15.1─1、5、8、9題.

  2.預(yù)習(xí)“整式的加減”.

  課后作業(yè):《課堂感悟與探究》

  15.1.2 整式的加減(1)

  教學(xué)目的:

  1、解字母表示數(shù)量關(guān)系的過程,發(fā)展符號感。

  2、會進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及語言表達(dá)能力。

  教學(xué)重點(diǎn):

  會進(jìn)行整式加減的運(yùn)算,并能說明其中的算理。

  教學(xué)難點(diǎn):

  正確地去括號、合并同類項(xiàng),及符號的正確處理。

  教學(xué)過程:

  一、課前練習(xí):

  1、填空:整式包括 和

  2、單項(xiàng)式 的系數(shù)是 、次數(shù)是

  3、多項(xiàng)式 是 次 項(xiàng)式,其中二次項(xiàng)

  系數(shù)是 一次項(xiàng)是 ,常數(shù)項(xiàng)是

  4、下列各式,是同類項(xiàng)的一組是( )

  (A) 與 (B) 與 (C) 與

  5、去括號后合并同類項(xiàng):

  二、探索練習(xí):

  1、如果用a 、b分別表示一個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)兩位數(shù)可以表示為 交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字后得到的兩位數(shù)為

  這兩個(gè)兩位數(shù)的和為

  2、如果用a 、b、c分別表示一個(gè)三位數(shù)的百位數(shù)字、十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)三位數(shù)可以表示為 交換這個(gè)三位數(shù)的百位數(shù)字和個(gè)位數(shù)字后得到的三位數(shù)為

  這兩個(gè)三位數(shù)的差為

  ●議一議:在上面的兩個(gè)問題中,分別涉及到了整式的什么運(yùn)算?

  說說你是如何運(yùn)算的?

  ▲整式的加減運(yùn)算實(shí)質(zhì)就是

  運(yùn)算的結(jié)果是一個(gè)多項(xiàng)式或單項(xiàng)式。

  三、鞏固練習(xí):

  1、填空:(1) 與 的差是

  (2)、單項(xiàng)式 、 、 、 的和為

  (3)如圖所示,下面為由棋子所組成的三角形,

  一個(gè)三角形需六個(gè)棋子,三個(gè)三角形需

  ( )個(gè)棋子,n個(gè)三角形需 個(gè)棋子

  2、計(jì)算:

  (1)

 。2)

 。3)

  3、(1)求 與 的和

  (2)求 與 的差

  4、先化簡,再求值: 其中

  四、提高練習(xí):

  1、若A是五次多項(xiàng)式,B是三次多項(xiàng)式,則A+B一定是

 。ˋ)五次整式 (B)八次多項(xiàng)式

 。–)三次多項(xiàng)式 (D)次數(shù)不能確定

  2、足球比賽中,如果勝一場記3a分,平一場記a分,負(fù)一場

  記0分,那么某隊(duì)在比賽勝5場,平3場,負(fù)2場,共積多

  少分?

  3、一個(gè)兩位數(shù)與把它的數(shù)字對調(diào)所成的數(shù)的和,一定能被14

  整除,請證明這個(gè)結(jié)論。

  4、如果關(guān)于字母x的二次多項(xiàng)式 的值與x的取值無關(guān),

  試求m、n的值。

  五、小結(jié):整式的加減運(yùn)算實(shí)質(zhì)就是去括號和合并同類項(xiàng)。

  六、作業(yè):第8頁習(xí)題1、2、3

  15.1.2整式的加減(2)

  教學(xué)目標(biāo):1.會進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及其語言表達(dá)能力。

  2.通過探索規(guī)律的問題,進(jìn)一步符號表示的意義,發(fā)展符號感,發(fā)展推理能力。

  教學(xué)重點(diǎn)整式加減的運(yùn)算。

  教學(xué)難點(diǎn):探索規(guī)律的猜想。

  教學(xué)方法:嘗試練習(xí)法,討論法,歸納法。

  教學(xué)用具:投影儀

  教學(xué)過程:

  I探索練習(xí):

  擺第1個(gè)“小屋子”需要5枚棋子,擺第2個(gè)需要 枚棋子,擺第3個(gè)需要 枚棋子。按照這樣的方式繼續(xù)擺下去。

  (1)擺第10個(gè)這樣的“小屋子”需要 枚棋子

 。2)擺第n個(gè)這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個(gè)問題嗎?小組討論。

  二、例題講解:

  三、鞏固練習(xí):

  1、計(jì)算:

  (1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

 。3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

  2、已知:A=x3-x2-1,B=x2-2,計(jì)算:(1)B-A (2)A-3B

  3、列方程解應(yīng)用題:三角形三個(gè)內(nèi)角的和等于180°,如果三角形中第一個(gè)角等于第二個(gè)角的3倍,而第三個(gè)角比第二個(gè)角大15°,那么

  (1)第一個(gè)角是多少度?

 。2)其他兩個(gè)角各是多少度?

  四、提高練習(xí):

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項(xiàng)式?

  2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

 。▂+3)2=0,且B-2A=a,求A的值。

  3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對應(yīng)點(diǎn)如圖:

  試化簡:│a│-│a+b│+│c-a│+│b+c│

  小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進(jìn)行運(yùn)算。

  作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

【整式的乘除與因式分解全單元的教案】相關(guān)文章:

整式的乘除與因式分解教案01-26

整式的乘除和因式分解測試卷08-08

整式的乘除與因式分解同步練習(xí)選擇題07-22

八年級數(shù)學(xué)上整式的乘除與因式分解題01-07

七年級數(shù)學(xué)下第3章整式的乘除單元試題01-31

初三數(shù)學(xué)整式及因式分解專題訓(xùn)練題05-28

第一單元乘除法的教學(xué)設(shè)計(jì)06-18

整式的除法的教案05-15

《乘乘除除》教案04-04