欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

高三數(shù)學(xué)數(shù)列知識點

時間:2024-07-13 10:39:23 毅霖 數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

高三數(shù)學(xué)數(shù)列知識點

  數(shù)列是以正整數(shù)集(或它的有限子集)為定義域的函數(shù),是一列有序的數(shù)。數(shù)列中的每一個數(shù)都叫做這個數(shù)列的項。下面是小編幫大家整理的高三數(shù)學(xué)數(shù)列知識點,歡迎閱讀,希望大家能夠喜歡。

高三數(shù)學(xué)數(shù)列知識點

  數(shù)列

  數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。探索性問題是高考的熱點,常在數(shù)列解答題中出現(xiàn)。本章中還蘊含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。

  近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個方面:

 。1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項公式及求和公式。

 。2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。

 。3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。

  知識整合

  1、在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項公式、前n項和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實踐中的指導(dǎo)作用,靈活地運用數(shù)列知識和方法解決數(shù)學(xué)和實際生活中的有關(guān)問題。

  2、在解決綜合題和探索性問題實踐中加深對基礎(chǔ)知識、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識,溝通各類知識的聯(lián)系,形成更完整的知識網(wǎng)絡(luò),提高分析問題和解決問題的能力,進一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運用數(shù)學(xué)思想方法分析問題與解決問題的能力。

  3、培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問題的自覺性、培養(yǎng)學(xué)生主動探索的精神和科學(xué)理性的思維方法。

  拓展:

  數(shù)列的函數(shù)理解:

 、贁(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N_或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。②用函數(shù)的觀點認(rèn)識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a。列表法;b。圖像法;c。解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。

  通項公式:數(shù)列的第N項an與項的序數(shù)n之間的關(guān)系可以用一個公式an=f(n)來表示,這個公式就叫做這個數(shù)列的通項公式(注:通項公式不)。

  數(shù)列通項公式的特點:

 。1)有些數(shù)列的通項公式可以有不同形式,即不。

 。2)有些數(shù)列沒有通項公式(如:素數(shù)由小到大排成一列2,3,5,7,11……)。

  遞推公式:如果數(shù)列{an}的第n項與它前一項或幾項的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。

  數(shù)列遞推公式特點:

 。1)有些數(shù)列的遞推公式可以有不同形式,即不。

 。2)有些數(shù)列沒有遞推公式。

  有遞推公式不一定有通項公式。

  注:數(shù)列中的項必須是數(shù),它可以是實數(shù),也可以是復(fù)數(shù)。

  等差數(shù)列通項公式

  an=a1+(n—1)d

  n=1時a1=S1

  n≥2時an=Sn—Sn—1

  an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1—d令d=k,a1—d=b則得到an=kn+b

  等差中項

  由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。

  有關(guān)系:A=(a+b)÷2

  前n項和

  倒序相加法推導(dǎo)前n項和公式:

  Sn=a1+a2+a3+·····+an

  =a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①

  Sn=an+an—1+an—2+······+a1

  =an+(an—d)+(an—2d)+······+[an—(n—1)d]②

  由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

  ∴Sn=n(a1+an)÷2

  等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:

  Sn=n(a1+an)÷2=na1+n(n—1)d÷2

  Sn=dn2÷2+n(a1—d÷2)

  亦可得

  a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n

  an=2sn÷n—a1

  有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1

  等差數(shù)列性質(zhì)

  一、任意兩項am,an的關(guān)系為:

  an=am+(n—m)d

  它可以看作等差數(shù)列廣義的通項公式。

  二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:

  a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈N_

  三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq

  四、對任意的k∈N_,有Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差數(shù)列。

【高三數(shù)學(xué)數(shù)列知識點】相關(guān)文章:

高三數(shù)學(xué)數(shù)列教案10-27

小升初數(shù)學(xué)數(shù)列求和知識點07-22

《數(shù)列求和》小升初數(shù)學(xué)知識點06-03

小升初數(shù)學(xué)數(shù)列求和知識點歸納05-31

高考數(shù)學(xué)等比數(shù)列知識點03-22

最新小升初數(shù)學(xué)數(shù)列求和知識點大全05-16

高考數(shù)列知識點總結(jié)11-02

高三數(shù)學(xué)教案精篇數(shù)列求和05-20

小升初數(shù)列求和的相關(guān)知識點08-29