數(shù)學(xué)必修三第二章知識點
上學(xué)的時候,說到知識點,大家是不是都習(xí)慣性的重視?知識點也不一定都是文字,數(shù)學(xué)的知識點除了定義,同樣重要的公式也可以理解為知識點。還在苦惱沒有知識點總結(jié)嗎?以下是小編整理的數(shù)學(xué)必修三第二章知識點,希望對大家有所幫助。
隨機事件的概率及概率的意義
1、基本概念:
。1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
。2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
。3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
。4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事nA件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=n為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。nA
。6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值n,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率
概率的基本性質(zhì)
1、基本概念:
。1)事件的包含、并事件、交事件、相等事件
。2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
。3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
。4)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A
∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
2、概率的'基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
學(xué)習(xí)數(shù)學(xué)小竅門
建立數(shù)學(xué)糾錯本。
把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
限時訓(xùn)練。
可以找一組題(比如10道選擇題),爭取限定一個時間完成;也可以找1道大題,限時完成。這主要是創(chuàng)設(shè)一種考試情境,檢驗自己在緊張狀態(tài)下的思維水平。
調(diào)整心態(tài),正確對待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。
數(shù)學(xué)映射、函數(shù)、反函數(shù)知識點
1、對應(yīng)、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射。
2、對于函數(shù)的概念,應(yīng)注意如下幾點:
。1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù)。
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式。
。3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)。
3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;
(2)由y=f(x)的解析式求出x=f—1(y);
。3)將x,y對換,得反函數(shù)的習(xí)慣表達式y(tǒng)=f—1(x),并注明定義域。
注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起。
②熟悉的應(yīng)用,求f—1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運算。
【數(shù)學(xué)必修三第二章知識點】相關(guān)文章:
數(shù)學(xué)必修四第二章平面向量知識點10-21
物理必修二第二章知識點10-26
數(shù)學(xué)必修三統(tǒng)計知識點提綱12-10
高中數(shù)學(xué)必修三知識點02-10
數(shù)學(xué)必修一知識點11-05
物理必修二第二章知識點2篇11-28