欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

數(shù)學 百文網(wǎng)手機站

必修二數(shù)學第一章知識點

時間:2021-12-09 10:00:40 數(shù)學 我要投稿

人教版必修二數(shù)學第一章知識點

  在年少學習的日子里,說起知識點,應該沒有人不熟悉吧?知識點也不一定都是文字,數(shù)學的知識點除了定義,同樣重要的公式也可以理解為知識點。想要一份整理好的知識點嗎?以下是小編為大家收集的人教版必修二數(shù)學第一章知識點,歡迎大家借鑒與參考,希望對大家有所幫助。

人教版必修二數(shù)學第一章知識點

  1、柱、錐、臺、球的結構特征

  (1)棱柱:

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

  截面距離與高的比的平方。

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖

  是一個矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

  幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

  (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體幾何特征:①球的`截面是圓;②球面上任意一點到球心的距離等于半徑。

  數(shù)學知識點2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。

  數(shù)學知識點3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

  空間幾何體表面積計算公式

  1、直棱柱和正棱錐的表面積

  設棱柱高為h、底面多邊形的周長為c、則得到直棱柱側面面積計算公式:

  S=ch、即直棱柱的側面積等于它的底面周長和高的乘積、

  正棱錐的側面展開圖是一些全等的等腰三角形、底面是正多邊形、

  如果設它的底面邊長為a、底面周長為c、斜高為h'、則得到正n棱錐的側面積計算公式

  S=1/2_nah'=1/2_ch'、即正棱錐的側面積等于它的底面的周長和斜高乘積的一半、

  2、正棱臺的表面積

  正棱臺的側面展開圖是一些全等的等腰梯形、

  設棱臺下底面邊長為a、周長為c、上底面邊長為a'、周長為c'、斜高為h'則得到正n棱臺的側面積公式:S=1/2_n(a+a')h'=1/2(c+c')h'、

  3、球的表面積

  S=4πR2、即球面面積等于它的大圓面積的四倍、

  4.圓臺的表面積

  圓臺的側面展開圖是一個扇環(huán),它的表面積等于上,下兩個底面的面積和加上側面的面積,即

  S=π(r'2+r2+r'l+rl)

  高中學好數(shù)學的方法是什么

  1.數(shù)學公式一定要記熟,并且還要會推導,能舉一反三。

  2.學好數(shù)學最基礎的就是把課本知識點及課后習題都掌握好。

  3.數(shù)學80%的分數(shù)來源于基礎知識,20%的分數(shù)屬于難點,所以考120分并不難。

  4.數(shù)學需要沉下心去做,浮躁的人很難學好數(shù)學,踏踏實實做題才是硬道理。

  5數(shù)學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。

  數(shù)學函數(shù)知識點

  1.指數(shù)式、對數(shù)式,

  2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”.

  (2)函數(shù)圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可任意個.

  (3)函數(shù)圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數(shù)圖像.

  3.單調(diào)性和奇偶性

  (1)奇函數(shù)在關于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同.

  偶函數(shù)在關于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反.

  (2)復合函數(shù)的單調(diào)性特點是:“同性得增,增必同性;異性得減,減必異性”.

  復合函數(shù)的奇偶性特點是:“內(nèi)偶則偶,內(nèi)奇同外”.復合函數(shù)要考慮定義域的變化。(即復合有意義)

  4.對稱性與周期性(以下結論要消化吸收,不可強記)

  (1)函數(shù)與函數(shù)的圖像關于直線(軸)對稱.

  推廣一:如果函數(shù)對于一切,都有成立,那么的圖像關于直線(由“和的一半確定”)對稱.

  推廣二:函數(shù),的圖像關于直線對稱.

  (2)函數(shù)與函數(shù)的圖像關于直線(軸)對稱.

  (3)函數(shù)與函數(shù)的圖像關于坐標原點中心對稱.

【人教版必修二數(shù)學第一章知識點】相關文章:

人教版必修二數(shù)學知識點10-14

人教版物理必修二第一章知識點大全01-28

必修二物理知識點人教版10-26

必修四數(shù)學第一章知識點11-16

人教版必修三數(shù)學知識點第二章11-16

數(shù)學人教版必修二圓的方程知識點10-22

數(shù)學必修二概率知識點10-15

必修五第一章數(shù)學知識點11-16

數(shù)學必修二知識點的歸納02-08