導(dǎo)數(shù)的概念是什么及幾何意義
我們專升本是以計(jì)算為主的,下面讓我們一起學(xué)習(xí)導(dǎo)數(shù)定義以及幾何意義在考試中的考查內(nèi)容及相關(guān)題型的解法吧!以下是小編整理的導(dǎo)數(shù)的概念是什么及幾何意義,供大家參考借鑒,希望可以幫助到有需要的朋友。
導(dǎo)數(shù)的概念
導(dǎo)數(shù)(Derivative)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。
導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的`概念對(duì)函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。
不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。
對(duì)于可導(dǎo)的函數(shù)f(x),xf'(x)也是一個(gè)函數(shù),稱作f(x)的導(dǎo)函數(shù)(簡(jiǎn)稱導(dǎo)數(shù))。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過(guò)程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個(gè)求極限的過(guò)程,導(dǎo)數(shù)的四則運(yùn)算法則也來(lái)源于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過(guò)來(lái)求原來(lái)的函數(shù),即不定積分。微積分基本定理說(shuō)明了求原函數(shù)與積分是等價(jià)的。求導(dǎo)和積分是一對(duì)互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。
導(dǎo)數(shù)的求導(dǎo)法則
由基本函數(shù)的和、差、積、商或相互復(fù)合構(gòu)成的函數(shù)的導(dǎo)函數(shù)則可以通過(guò)函數(shù)的求導(dǎo)法則來(lái)推導(dǎo)。基本的求導(dǎo)法則如下:
1、求導(dǎo)的線性:對(duì)函數(shù)的線性組合求導(dǎo),等于先對(duì)其中每個(gè)部分求導(dǎo)后再取線性組合(即①式)。
2、兩個(gè)函數(shù)的乘積的導(dǎo)函數(shù):一導(dǎo)乘二+一乘二導(dǎo)(即②式)。
3、兩個(gè)函數(shù)的商的導(dǎo)函數(shù)也是一個(gè)分式:(子導(dǎo)乘母-子乘母導(dǎo))除以母平方(即③式)。
4、如果有復(fù)合函數(shù),則用鏈?zhǔn)椒▌t求導(dǎo)。
導(dǎo)數(shù)的歷史沿革
起源
大約在1629年,法國(guó)數(shù)學(xué)家費(fèi)馬研究了作曲線的切線和求函數(shù)極值的方法;1637年左右,他寫一篇手稿《求最大值與最小值的方法》。在作切線時(shí),他構(gòu)造了差分f(A+E)-f(A),發(fā)現(xiàn)的因子E就是我們所說(shuō)的導(dǎo)數(shù)f'(A)。
發(fā)展
17世紀(jì)生產(chǎn)力的發(fā)展推動(dòng)了自然科學(xué)和技術(shù)的發(fā)展,在前人創(chuàng)造性研究的基礎(chǔ)上,大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開(kāi)始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”,他稱變量為流量,稱變量的變化率為流數(shù),相當(dāng)于我們所說(shuō)的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運(yùn)用無(wú)窮多項(xiàng)方程的計(jì)算法》和《流數(shù)術(shù)和無(wú)窮級(jí)數(shù)》,流數(shù)理論的實(shí)質(zhì)概括為:他的重點(diǎn)在于一個(gè)變量的函數(shù)而不在于多變量的方程;在于自變量的變化與函數(shù)的變化的比的構(gòu)成;最在于決定這個(gè)比當(dāng)變化趨于零時(shí)的極限。
成熟
1750年達(dá)朗貝爾在為法國(guó)科學(xué)家院出版的《百科全書(shū)》第四版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點(diǎn),可以用現(xiàn)代符號(hào)簡(jiǎn)單表示: 。
1823年,柯西在他的《無(wú)窮小分析概論》中定義導(dǎo)數(shù):如果函數(shù)y=f(x)在變量x的兩個(gè)給定的界限之間保持連續(xù),并且我們?yōu)檫@樣的變量指定一個(gè)包含在這兩個(gè)不同界限之間的值,那么是使變量得到一個(gè)無(wú)窮小增量。19世紀(jì)60年代以后,魏爾斯特拉斯創(chuàng)造了ε-δ語(yǔ)言,對(duì)微積分中出現(xiàn)的各種類型的極限重加表達(dá)。
微積分學(xué)理論基礎(chǔ),大體可以分為兩個(gè)部分。一個(gè)是實(shí)無(wú)限理論,即無(wú)限是一個(gè)具體的東西,一種真實(shí)的存在;另一種是潛無(wú)限理論,指一種意識(shí)形態(tài)上的過(guò)程,比如無(wú)限接近。
就數(shù)學(xué)歷史來(lái)看,兩種理論都有一定的道理,實(shí)無(wú)限就使用了150年。
光是電磁波還是粒子是一個(gè)物理學(xué)長(zhǎng)期爭(zhēng)論的問(wèn)題,后來(lái)由波粒二象性來(lái)統(tǒng)一。微積分無(wú)論是用現(xiàn)代極限論還是150年前的理論,都不是最好的方法。
【導(dǎo)數(shù)的概念是什么及幾何意義】相關(guān)文章:
中考加分政策的概念是什么01-27
環(huán)境日的意義是什么07-20
績(jī)效考核的概念和意義有哪些12-18
會(huì)計(jì)信息質(zhì)量的概念是什么01-26
薪酬福利管理的意義是什么12-02
商務(wù)接待禮儀的意義是什么12-18
會(huì)計(jì)主體假設(shè)的意義是什么12-18
世界水日的意義是什么07-27
清明節(jié)的意義是什么07-28
中秋的象征意義是什么12-25