欧美日韩不卡一区二区三区,www.蜜臀.com,高清国产一区二区三区四区五区,欧美日韩三级视频,欧美性综合,精品国产91久久久久久,99a精品视频在线观看

數(shù)學(xué) 百文網(wǎng)手機(jī)站

數(shù)學(xué)第二章知識(shí)點(diǎn)

時(shí)間:2022-11-26 16:36:50 數(shù)學(xué) 我要投稿

數(shù)學(xué)第二章知識(shí)點(diǎn)

  在日常過(guò)程學(xué)習(xí)中,是不是聽(tīng)到知識(shí)點(diǎn),就立刻清醒了?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。為了幫助大家掌握重要知識(shí)點(diǎn),下面是小編幫大家整理的數(shù)學(xué)第二章知識(shí)點(diǎn),僅供參考,歡迎大家閱讀。

數(shù)學(xué)第二章知識(shí)點(diǎn)

數(shù)學(xué)第二章知識(shí)點(diǎn)1

  數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度(三者缺一不可)。

  任何一個(gè)有理數(shù),都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。(反過(guò)來(lái),不能說(shuō)數(shù)軸上所有的點(diǎn)都表示有理數(shù))

  如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱(chēng)其中一個(gè)數(shù)為另一個(gè)數(shù)的相反數(shù),也稱(chēng)這兩個(gè)數(shù)互為相反數(shù)。(0的相反數(shù)是0)

  在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的側(cè),且到原點(diǎn)的距離相等。

  數(shù)軸上兩點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)在原點(diǎn)的右邊,負(fù)數(shù)在原點(diǎn)的左邊。

  絕對(duì)值的定義:一個(gè)數(shù)a的絕對(duì)值就是數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離。數(shù)a的絕對(duì)值記作|a|。

  正數(shù)的絕對(duì)值是它本身;負(fù)數(shù)的絕對(duì)值是它的數(shù);0的絕對(duì)值是0。

  

  絕對(duì)值的性質(zhì):除0外,絕對(duì)值為一正數(shù)的數(shù)有兩個(gè),它們互為相反數(shù);

  互為相反數(shù)的兩數(shù)(除0外)的絕對(duì)值相等;

  任何數(shù)的絕對(duì)值總是非負(fù)數(shù),即|a|0

  比較兩個(gè)負(fù)數(shù)的大小,絕對(duì)值大的反而小。比較兩個(gè)負(fù)數(shù)的大小的步驟如下:

  ①先求出兩個(gè)數(shù)負(fù)數(shù)的絕對(duì)值;

 、诒容^兩個(gè)絕對(duì)值的大小;

  ③根據(jù)兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小做出正確的判斷。

  絕對(duì)值的性質(zhì):

 、賹(duì)任何有理數(shù)a,都有|a|0

 、谌魘a|=0,則|a|=0,反之亦然

 、廴魘a|=b,則a=b

 、軐(duì)任何有理數(shù)a,都有|a|=|-a|

  有理數(shù)加法法則:

  ①同號(hào)兩數(shù)相加,取相同符號(hào),并把絕對(duì)值相加。

  ②異號(hào)兩數(shù)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí)取絕對(duì)值較大的數(shù)的符號(hào),并用較大數(shù)的絕對(duì)值減去較小數(shù)的絕對(duì)值。

  ③一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

  加法的交換律、結(jié)合律在有理數(shù)運(yùn)算中同樣適用。

  靈活運(yùn)用運(yùn)算律,使用運(yùn)算簡(jiǎn)化,通常有下列規(guī)律:

 、倩橄喾吹膬蓚(gè)數(shù),可以先相加;

 、诜(hào)相同的數(shù),可以先相加;

 、鄯帜赶嗤臄(shù),可以先相加;

  ④幾個(gè)數(shù)相加能得到整數(shù),可以先相加。

  有理數(shù)減法法則:

  減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  有理數(shù)減法運(yùn)算時(shí)注意兩變:

 、俑淖冞\(yùn)算符號(hào);

  ②改變減數(shù)的性質(zhì)符號(hào)(變?yōu)橄喾磾?shù))

  有理數(shù)減法運(yùn)算時(shí)注意一個(gè)不變:被減數(shù)與減數(shù)的位置不能變換,也就是說(shuō),減法沒(méi)有交換律。

  有理數(shù)的加減法混合運(yùn)算的步驟:

  ①寫(xiě)成省略加號(hào)的代數(shù)和。在一個(gè)算式中,若有減法,應(yīng)由有理數(shù)的減法法則轉(zhuǎn)化為加法,然后再省略加號(hào)和括號(hào);

 、诶眉臃▌t,加法交換律、結(jié)合律簡(jiǎn)化計(jì)算。

  (注意:減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù),當(dāng)有減法統(tǒng)一成加法時(shí),減數(shù)應(yīng)變成它本身的相反數(shù)。)

  有理數(shù)乘法法則:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。

  ②任何數(shù)與0相乘,積仍為0。

  如果兩個(gè)數(shù)互為倒數(shù),則它們的乘積為1。(如:-2與 、 等)

  乘法的交換律、結(jié)合律、分配律在有理數(shù)運(yùn)算中同樣適用。

  有理數(shù)乘法運(yùn)算步驟:①先確定積的符號(hào);

 、谇蟪龈饕驍(shù)的絕對(duì)值的積。

  乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。注意:

  ①零沒(méi)有倒數(shù)

 、谇蠓?jǐn)?shù)的倒數(shù),就是把分?jǐn)?shù)的分子分母顛倒位置。一個(gè)帶分?jǐn)?shù)要先化成假分?jǐn)?shù)。

 、壅龜(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。

  有理數(shù)除法法則:

  ①兩個(gè)有理數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。

 、0除以任何非0的數(shù)都得0。0不可作為除數(shù),否則無(wú)意義。

  有理數(shù)的乘方

  注意:

  ①一個(gè)數(shù)可以看作是本身的一次方,如5=51;

  ②當(dāng)?shù)讛?shù)是負(fù)數(shù)或分?jǐn)?shù)時(shí),要先用括號(hào)將底數(shù)括上,再在右上角寫(xiě)指數(shù)。

  乘方的運(yùn)算性質(zhì):

  ①正數(shù)的任何次冪都是正數(shù);

 、谪(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù);

 、廴魏螖(shù)的偶數(shù)次冪都是非負(fù)數(shù);

  ④1的任何次冪都得1,0的任何次冪都得0;

  ⑤-1的偶次冪得1;-1的奇次冪得-1;

 、拊谶\(yùn)算過(guò)程中,首先要確定冪的符號(hào),然后再計(jì)算冪的絕對(duì)值。

  有理數(shù)混合運(yùn)算法則:①先算乘方,再算乘除,最后算加減。

  ②如果有括號(hào),先算括號(hào)里面的。

數(shù)學(xué)第二章知識(shí)點(diǎn)2

  整式加減由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運(yùn)算的基礎(chǔ),也是學(xué)習(xí)方程、不等式和函數(shù)的基礎(chǔ)。為了體現(xiàn)本章知識(shí)的特殊地位與作用,具有以下幾個(gè)特點(diǎn):

  1。充分體現(xiàn)由特殊到一般,由一般到特殊的思維過(guò)程,經(jīng)歷探索數(shù)量關(guān)系和變化規(guī)律的過(guò)程,滲透辯證唯物主義思想。

  2。知識(shí)呈現(xiàn)過(guò)程盡量做到與學(xué)生已有生活經(jīng)驗(yàn)密切聯(lián)系,如皮球的彈跳高度,傳數(shù)游戲等,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和能力。

  3。讓知識(shí)的發(fā)生、發(fā)展過(guò)程得以充分暴露,重視基本知識(shí)和基本技能的學(xué)習(xí)。

  4。注意發(fā)揮例題和習(xí)題的教育功能。加強(qiáng)學(xué)科間的縱向聯(lián)系并注意與其他學(xué)科的橫向聯(lián)系,擴(kuò)充學(xué)生的知識(shí)面,注意適當(dāng)插入一些開(kāi)放題,培養(yǎng)發(fā)散思維,適時(shí)滲透美育和德育教育。

  知識(shí)要點(diǎn)1。整式的有關(guān)概念

 。1)單項(xiàng)式:表示數(shù)與字母的乘積的代數(shù)式,叫做單項(xiàng)式,單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式,如、2πr、a,0……都是單項(xiàng)式。

  (2)多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。

數(shù)學(xué)第二章知識(shí)點(diǎn)3

  1.無(wú)理數(shù)

  ⑴無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)

 、苾蓚(gè)無(wú)理數(shù)的和還是無(wú)理數(shù)

  2.平方根

  ⑴算術(shù)平方根、平方根

  一個(gè)正數(shù)有兩個(gè)平方根,0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根。

 、崎_(kāi)平方:求一個(gè)數(shù)的平方根的運(yùn)算叫開(kāi)平方

  被開(kāi)方數(shù)

  3.立方根

  ⑴立方根,如果一個(gè)數(shù)x的立方等于a,即,那么這個(gè)數(shù)x就叫a的立方根.

  ⑵正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0.

 、情_(kāi)立方、被開(kāi)方數(shù)

  4.公園有多寬

  求根式、估算根式、根據(jù)面積求邊長(zhǎng)

  5.實(shí)數(shù)的運(yùn)算

  運(yùn)算法則(加、減、乘、除、乘方、開(kāi)方)

  運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]分配律)

  運(yùn)算順序:A.高級(jí)運(yùn)算到低級(jí)運(yùn)算;B.(同級(jí)運(yùn)算)從"左"

  到"右"(如5÷×5);C.(有括號(hào)時(shí))由"小"到"中"到"大"。

  6.實(shí)數(shù)的概念是每年中考的必考知識(shí)點(diǎn),尤其是相反數(shù)、倒數(shù)和絕對(duì)值都是高頻考點(diǎn)。我們不僅需要會(huì)求一個(gè)數(shù)的相反數(shù),求一個(gè)數(shù)的倒數(shù),求一個(gè)數(shù)的絕對(duì)值;還要注意0是沒(méi)有倒數(shù)的,倒數(shù)等于它本身的有±1,相反數(shù)等于它本身的只有0。

  7.科學(xué)記數(shù)法可以說(shuō)是是每年中考的必考題,在解決具體問(wèn)題時(shí),需要記清楚相關(guān)概念;另外注意單位換算。對(duì)于近似數(shù)和精確度需要注意的是帶計(jì)算單位的數(shù)的精確度,需要統(tǒng)一為以“個(gè)”為計(jì)算單位的數(shù),再來(lái)確定。

  8.科學(xué)記數(shù)法可以說(shuō)是是每年中考的必考題,在解決具體問(wèn)題時(shí),需要記清楚相關(guān)概念;另外注意單位換算。對(duì)于近似數(shù)和精確度需要注意的是帶計(jì)算單位的數(shù)的精確度,需要統(tǒng)一為以“個(gè)”為計(jì)算單位的數(shù),再來(lái)確定。

  9.實(shí)數(shù)比較大小也是中考熱點(diǎn),主要方法可用數(shù)軸比較法、估算法和作差法。至于倒數(shù)法和平方法不是很常見(jiàn),所以只需簡(jiǎn)單了解即可。

  10.計(jì)算是數(shù)學(xué)的基礎(chǔ),也是我們解決問(wèn)題的必要手段。提高實(shí)數(shù)的運(yùn)算能力,先要審題,理解有關(guān)概念。要注意零指數(shù)、負(fù)整指數(shù)、乘法、特殊角三角函數(shù)值、二次根式化簡(jiǎn)和絕對(duì)值等知識(shí)點(diǎn)。在計(jì)算時(shí)需要先確定符號(hào),再確定結(jié)果,把好符號(hào)關(guān)。

  學(xué)數(shù)學(xué)的好方法

  課前預(yù)習(xí)閱讀

  預(yù)習(xí)課文時(shí),要準(zhǔn)備一張紙、一支筆,將課本中的關(guān)鍵詞語(yǔ)、產(chǎn)生的疑問(wèn)和需要思考的問(wèn)題隨手記下,對(duì)定義、公理、公式、法則等,可以在紙上進(jìn)行簡(jiǎn)單的復(fù)述,推理。重點(diǎn)知識(shí)可在課本上批、劃、圈、點(diǎn)。這樣做,不但有助于理解課文,還能幫助我們?cè)谡n堂上集中精力聽(tīng)講,有重點(diǎn)地聽(tīng)講。

  課后鞏固

  課后鞏固自己的知識(shí)點(diǎn)也很重要。課后鞏固可以讓你的知識(shí)點(diǎn)得到一個(gè)再記憶的效果,加深記憶數(shù)學(xué)知識(shí)點(diǎn)的效果。

  初中數(shù)學(xué)函數(shù)的概念知識(shí)點(diǎn)

  1.常量與變量:在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量;在某一變化過(guò)程中保持?jǐn)?shù)值不變的量叫做常量.

  2.函數(shù):在某一變化過(guò)程中的兩個(gè)變量x和y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一確定的值和它對(duì)應(yīng),那么y就叫做x的函數(shù),其中x做自變量,y是因變量。

  (1)自變量取值范圍的確定

 、僬胶瘮(shù)自變量的取值范圍是全體實(shí)數(shù)。

 、诜质胶瘮(shù)自變量的取值范圍是使分母不為0的實(shí)數(shù)。

 、鄱胃胶瘮(shù)自變量的取值范嗣是使被開(kāi)方數(shù)是非負(fù)數(shù)的實(shí)數(shù),若涉及實(shí)際問(wèn)題的函數(shù),除滿(mǎn)足上述要求外還要使實(shí)際問(wèn)題有意義。

數(shù)學(xué)第二章知識(shí)點(diǎn)4

  實(shí)數(shù)的概念

  實(shí)數(shù),是有理數(shù)和無(wú)理數(shù)的總稱(chēng)。數(shù)學(xué)上,實(shí)數(shù)定義為與數(shù)軸上的實(shí)數(shù),是有理數(shù)和無(wú)理數(shù)的總稱(chēng)。數(shù)學(xué)上,實(shí)數(shù)定義為與數(shù)軸上的實(shí)數(shù),點(diǎn)相對(duì)應(yīng)的數(shù)。實(shí)數(shù)可以直觀(guān)地看作有限小數(shù)與無(wú)限小數(shù),實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)。但僅僅以列舉的方式不能描述實(shí)數(shù)的整體。實(shí)數(shù)和虛數(shù)共同構(gòu)成復(fù)數(shù)。

  實(shí)數(shù)可以分為有理數(shù)和無(wú)理數(shù)兩類(lèi),或代數(shù)數(shù)和超越數(shù)兩類(lèi)。實(shí)數(shù)集通常用黑正體字母R表示。R表示n維實(shí)數(shù)空間。實(shí)數(shù)是不可數(shù)的。實(shí)數(shù)是實(shí)數(shù)理論的核心研究對(duì)象。

  實(shí)數(shù)有什么范圍

  在實(shí)數(shù)范圍內(nèi),是指對(duì)于全體實(shí)數(shù)都成立,實(shí)數(shù)包括有理數(shù)和無(wú)理數(shù),也可以分為正實(shí)數(shù),0和負(fù)實(shí)數(shù),不只是大于等于0,還包括負(fù)實(shí)數(shù)。

  整數(shù)和小數(shù)的集合也是實(shí)數(shù),實(shí)數(shù)的定義是:有理數(shù)和無(wú)理數(shù)的集合。

  而整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù),小數(shù)分為有限小數(shù),無(wú)限循環(huán)小數(shù),無(wú)限不循環(huán)小數(shù)(即無(wú)理數(shù)),其中有限小數(shù)和無(wú)限循環(huán)小數(shù)均能化為分?jǐn)?shù)。

  所以小數(shù)即為分?jǐn)?shù)和無(wú)理數(shù)的集合,加上整數(shù),即為整數(shù)-分?jǐn)?shù)-無(wú)理數(shù),也就是有理數(shù)-無(wú)理數(shù),即實(shí)數(shù)。

  實(shí)數(shù)的性質(zhì)

  1.基本運(yùn)算:

  實(shí)數(shù)可實(shí)現(xiàn)的基本運(yùn)算有加、減、乘、除、平方等,對(duì)非負(fù)數(shù)還可以進(jìn)行開(kāi)方運(yùn)算。

  實(shí)數(shù)加、減、乘、除(除數(shù)不為零)、平方后結(jié)果還是實(shí)數(shù)。

  任何實(shí)數(shù)都可以開(kāi)奇次方,結(jié)果仍是實(shí)數(shù),只有非負(fù)實(shí)數(shù),才能開(kāi)偶次方其結(jié)果還是實(shí)數(shù)。

  有理數(shù)范圍內(nèi)的運(yùn)算律、運(yùn)算法則在實(shí)數(shù)范圍內(nèi)仍適用:

  交換律:a+b=b+a,ab=ba

  結(jié)合律:(a+b)+c=a+(b+c)

  分配律:a(b+c)=ab+ac

  2.實(shí)數(shù)的相反數(shù):

  實(shí)數(shù)的相反數(shù)的意義和有理數(shù)的相反數(shù)的意義相同。

  實(shí)數(shù)只有符號(hào)不同的兩個(gè)數(shù),它們的和為零,我們就說(shuō)其中一個(gè)是另一個(gè)的相反數(shù)。

  實(shí)數(shù)a的相反數(shù)是-a,a和-a在數(shù)軸上到原點(diǎn)0的距離相等。

  3.實(shí)數(shù)的絕對(duì)值:

  實(shí)數(shù)的絕對(duì)值的意義和有理數(shù)的絕對(duì)值的意義相同。一個(gè)正實(shí)數(shù)的絕對(duì)值等于它本身;

  一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值等于它的相反數(shù),0的絕對(duì)值是0,實(shí)數(shù)a的絕對(duì)值是:|a|

  ①a為正數(shù)時(shí),|a|=a(不變)

  ②a為0時(shí),|a|=0

  ③a為負(fù)數(shù)時(shí),|a|=a(為a的相反數(shù))

  (任何數(shù)的絕對(duì)值都大于或等于0,因?yàn)榫嚯x沒(méi)有負(fù)的。)

  4實(shí)數(shù)的倒數(shù):

  實(shí)數(shù)的倒數(shù)與有理數(shù)的倒數(shù)一樣,如果a表示一個(gè)非零的實(shí)數(shù),那么實(shí)數(shù)a的倒數(shù)是:1/a(a≠0)

  初中數(shù)學(xué)分式的運(yùn)算知識(shí)點(diǎn)

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱(chēng)為原方程的增根。

  一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”。

  數(shù)學(xué)學(xué)習(xí)方法訣竅

  養(yǎng)成良好的解題習(xí)慣

  要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。

  在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。

  正確對(duì)待考試

  首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。

  在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。

數(shù)學(xué)第二章知識(shí)點(diǎn)5

  一、選擇題(每小題4分,共12分)

  1.計(jì)算(-x)2x3的結(jié)果是()

  A.x5 B.-x5 C.x6 D.-x6

  2.下列各式計(jì)算正確的個(gè)數(shù)是()

  ①x4②x3x3=2x6 ;③a5+a7 =a12;

 、(-a)2(-a2)=-a4;⑤a4a3=a7.

  A.1B.2C.3D.4

  3.下列各式能用同底數(shù)冪乘法法則進(jìn)行計(jì)算的是()

  A.(x+y)2(x-y)2B.(x+y)2(-x-y)

  C.(x+y)2+2 (x+y)2D.(x-y)2(-x-y)

  二、填空題(每小題4分,共12分)

  4.(20xx天津中考)計(jì)算aa6的結(jié)果等于.

  5.若2n-224=64,則n= .

  6.已知2x2x8=213,則x=.

  三、解答題(共26分)

  7.(8分)計(jì)算:(1)(- 3) 3(-3)4(-3).

  (2)a3a2-a(-a)2a2.

  (3)(2m-n)4(n-2m)3(2m-n)6.

  (4)yyn+ 1-2yny2.

  8.(8分)已知ax=5,ay=4,求下列各式的值:

  (1)ax+2. (2)ax+y+1.

  【拓展延伸】

  9.(10分)已知2a=3,2b=6, 2c=12,試確定a,b,c之間的關(guān)系.

  答案解析

  1.【解析】選A.(-x)2x3=x2x3=x2+3=x5.

  2.【解析】選B.x4x2=x4+2=x6,故①錯(cuò)誤;x3x3=x3+3=x6,故②錯(cuò)誤;a5與a7不是同類(lèi)項(xiàng),不能合并,故③錯(cuò)誤;(-a)2(- a2)=a2(-a2)=-a2a2=-a2+2=-a4,故④正確;a4a3=a4+3=a7,故⑤正確.

  3.【解 析】選B.A,D選項(xiàng)底數(shù)不相同,不是同底數(shù)冪的乘法,C選項(xiàng)不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.

  4.【解析】根據(jù)同底數(shù)冪的乘法法 則同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,所以aa 6=a1+6=a7.

  答案:a7

  5.【解析】因?yàn)?2n-224=2n-2+4=2n+2,64=26,

  所以2n+2=26,即n+2=6,解得n=4.

  答案:4

  6.【解析】因?yàn)?x2x8=2x2x23=2x+x+3 ,

  所以x+x+3=13,解得x=5.

  答案:5

  7.【解析】(1)(-3)3(-3)4(-3)=(-3)3+4+1=(-3)8=38.

  (2)a3a2-a(-a)2a2=a3+2-aa2a2

  =a5-a5=0.

  (3)(2m-n)4(n-2m)3(2m-n)6

  =(n-2m)4(n-2m)3(n-2m)6

  =(n-2m)4+3+6=(n-2m)13.

  (4)yyn+1-2yny2=yn+1+1-2yn+2

  =yn+2-2yn+2=(1-2)yn+2

  =-yn+2.

  8.【解析】(1)ax+2=axa2=5a2.

  (2)ax+y+1=axaya=54a=20a.

  9.【解析】方法一:因?yàn)?2 =322=62,

  所以2c=12=322=2a22=2a+2,

  即c=a+2,①

  又因?yàn)?c=12=62=2b2=2b+1,

  所以c=b+1,②

  ①+②得2c=a+b+3.

  方法二:因?yàn)?b=6=32=2a2=2a+1,

  所以b=a+1,①

  又因?yàn)?c=12=62=2b2=2b+1,

  所以c=b+1,②

 、-②得2b=a+c.

數(shù)學(xué)第二章知識(shí)點(diǎn)6

  1、實(shí)數(shù)的概念及分類(lèi)

 、賹(shí)數(shù)的分類(lèi)

  ②無(wú)理數(shù)

  無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù)。

  在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)之,歸納起來(lái)有四類(lèi):

  開(kāi)方開(kāi)不盡的數(shù),如 √7 ,3 √2等;

  有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如π /?+8等;

  有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;

  某些三角函數(shù)值,如sin60°等

  2、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值

 、傧喾磾(shù)

  實(shí)數(shù)與它的相反數(shù)是一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。

  ②絕對(duì)值

  在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值。|a|≥0。0的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

 、鄣箶(shù)

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。0沒(méi)有倒數(shù)。

 、軘(shù)軸

  規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸(畫(huà)數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

  解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。

  ⑤估算

  3、平方根、算數(shù)平方根和立方根

 、偎阈g(shù)平方根

  一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。

  性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個(gè),0的算術(shù)平方根是0。

  ②平方根

  一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a,那么這個(gè)數(shù)x就叫做a的平方根(或二次方根)。

  性質(zhì):一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒(méi)有平方根。

  開(kāi)平方求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方。注意 √a的雙重非負(fù)性:√a≥0 ; a≥0

  ③立方根

  一般地,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a 的立方根(或三次方根)。

  表示方法:記作 3 √a

  性質(zhì):一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零。

  注意:- 3 √a=3 √-a,這說(shuō)明三次根號(hào)內(nèi)的負(fù)號(hào)可以移到根號(hào)外面。

  4、實(shí)數(shù)大小的比較

 、賹(shí)數(shù)比較大小

  正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);

  數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;

  兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。

 、趯(shí)數(shù)大小比較的幾種常用方法

  數(shù)軸比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。

  求差比較:設(shè)a、b是實(shí)數(shù) a-b>0a>b; a-b=0a=b; a-b<0a<b 。

  求商比較法:設(shè)a、b是兩正實(shí)數(shù),

  絕對(duì)值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則∣a∣>∣b∣a<b。

  平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則 a2>b2a<b 。

  5、算術(shù)平方根有關(guān)計(jì)算(二次根式)

  ①含有二次根號(hào)“ √ ”;被開(kāi)方數(shù)a必須是非負(fù)數(shù)。

 、谛再|(zhì):

  ③運(yùn)算結(jié)果若含有“ √ ”形式,必須滿(mǎn)足:

  被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式

  被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式

  6、實(shí)數(shù)的運(yùn)算

  ①六種運(yùn)算:加、減、乘、除、乘方 、開(kāi)方。

  ②實(shí)數(shù)的運(yùn)算順序

  先算乘方和開(kāi)方,再算乘除,最后算加減,如果有括號(hào),就先算括號(hào)里面的。

  ③運(yùn)算律

  加法交換律 a+b= b+a

  加法結(jié)合律 (a+b)+c= a+( b+c )

  乘法交換律 ab= ba

  乘法結(jié)合律 (ab)c = a( bc )

  乘法對(duì)加法的分配律 a( b+c )=ab+ac

數(shù)學(xué)第二章知識(shí)點(diǎn)7

  1.向量可以形象化地表示為帶箭頭的線(xiàn)段。箭頭所指:代表向量的方向;線(xiàn)段長(zhǎng)度:代表向量的大小。

  2.規(guī)定若線(xiàn)段AB的端點(diǎn)A為起點(diǎn),B為終點(diǎn),則線(xiàn)段就具有了從起點(diǎn)A到終點(diǎn)B的方向和長(zhǎng)度。具有方向和長(zhǎng)度的線(xiàn)段叫做有向線(xiàn)段。

  3.向量的模:向量的大小,也就是向量的長(zhǎng)度(或稱(chēng)模)。向量a的模記作|a|。

  注:向量的模是非負(fù)實(shí)數(shù),是可以比較大小的。因?yàn)榉较虿荒鼙容^大小,所以向量也就不能比較大小。對(duì)于向量來(lái)說(shuō)“大于”和“小于”的概念是沒(méi)有意義的。

  4.單位向量:長(zhǎng)度為一個(gè)單位(即模為1)的向量,叫做單位向量.與向量a同向,且長(zhǎng)度為單位1的向量,叫做a方向上的單位向量,記作a0。

  5.長(zhǎng)度為0的向量叫做零向量,記作0。零向量的始點(diǎn)和終點(diǎn)重合,所以零向量沒(méi)有確定的方向,或說(shuō)零向量的方向是任意的。

  向量的計(jì)算

  1.加法

  交換律:a+b=b+a;

  結(jié)合律:(a+b)+c=a+(b+c)。

  2.減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0

  加減變換律:a+(-b)=a-b

  3.數(shù)量積

  定義:已知兩個(gè)非零向量a,b。作OA=a,OB=b,則∠AOB稱(chēng)作向量a和向量b的夾角,記作θ并規(guī)定0≤θ≤π

  向量的數(shù)量積的運(yùn)算律

  a·b=b·a(交換律)

  (λa)·b=λ(a·b)(關(guān)于數(shù)乘法的結(jié)合律)

  (a+b)·c=a·c+b·c(分配律)

  向量的數(shù)量積的性質(zhì)

  a·a=|a|的平方。

  a⊥b〈=〉a·b=0。

  |a·b|≤|a|·|b|。(該公式證明如下:|a·b|=|a|·|b|·|cosα| 因?yàn)?≤|cosα|≤1,所以|a·b|≤|a|·|b|)

  高中學(xué)好數(shù)學(xué)的方法是什么

  數(shù)學(xué)需要沉下心去做,浮躁的人很難學(xué)好數(shù)學(xué),踏踏實(shí)實(shí)做題才是硬道理。

  數(shù)學(xué)要想學(xué)好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。

  數(shù)學(xué)最主要的就是解題過(guò)程,懂得數(shù)學(xué)思維很關(guān)鍵,思路通了,數(shù)學(xué)自然就會(huì)了。

  數(shù)學(xué)不是用來(lái)看的,而是用來(lái)算的,或許這一秒沒(méi)思路,當(dāng)你拿起筆開(kāi)始計(jì)算的那一秒,就豁然開(kāi)朗了。

  數(shù)學(xué)題目不會(huì)做,原因之一就是例題沒(méi)研究明白,所以數(shù)學(xué)書(shū)上的例題絕對(duì)不要放過(guò)。

  數(shù)學(xué)函數(shù)的奇偶性知識(shí)點(diǎn)

  1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

  2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式。

數(shù)學(xué)第二章知識(shí)點(diǎn)8

  隨機(jī)事件的概率及概率的意義

  1、基本概念:

  (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

 。2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統(tǒng)稱(chēng)為相對(duì)于條件S的確定事件;

  (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

  (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀(guān)察某一事件A是否出現(xiàn),稱(chēng)n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事nA件A出現(xiàn)的頻數(shù);稱(chēng)事件A出現(xiàn)的比例fn(A)=n為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱(chēng)為事件A的概率。nA

 。6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值n,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率

  概率的基本性質(zhì)

  1、基本概念:

 。1)事件的包含、并事件、交事件、相等事件

  (2)若A∩B為不可能事件,即A∩B=ф,那么稱(chēng)事件A與事件B互斥;

 。3)若A∩B為不可能事件,A∪B為必然事件,那么稱(chēng)事件A與事件B互為對(duì)立事件;

 。4)當(dāng)事件A與B互斥時(shí),滿(mǎn)足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A

  ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

  2、概率的基本性質(zhì):

  1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時(shí),滿(mǎn)足加法公式:P(A∪B)= P(A)+ P(B);

  3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

  4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。

  學(xué)習(xí)數(shù)學(xué)小竅門(mén)

  建立數(shù)學(xué)糾錯(cuò)本。

  把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來(lái),以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問(wèn)題完整、推理嚴(yán)密。

  限時(shí)訓(xùn)練。

  可以找一組題(比如10道選擇題),爭(zhēng)取限定一個(gè)時(shí)間完成;也可以找1道大題,限時(shí)完成。這主要是創(chuàng)設(shè)一種考試情境,檢驗(yàn)自己在緊張狀態(tài)下的思維水平。

  調(diào)整心態(tài),正確對(duì)待考試。

  首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。

  數(shù)學(xué)映射、函數(shù)、反函數(shù)知識(shí)點(diǎn)

  1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射。

  2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

  (1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù)。

 。2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式。

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的.復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)。

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

 。1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

 。2)由y=f(x)的解析式求出x=f—1(y);

 。3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f—1(x),并注明定義域。

  注意①:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起。

  ②熟悉的應(yīng)用,求f—1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過(guò)程,從而簡(jiǎn)化運(yùn)算。

數(shù)學(xué)第二章知識(shí)點(diǎn)9

  一、余角和補(bǔ)角:

  1、余角:

  定義:如果兩個(gè)角的和是直角,那么稱(chēng)這兩個(gè)角互為余角。

  性質(zhì):同角或等角的余角相等。

  2、補(bǔ)角:

  定義:如果兩個(gè)角的和是平角,那么稱(chēng)這兩個(gè)角互為補(bǔ)角。

  性質(zhì):同角或等角的補(bǔ)角相等。

  二、對(duì)頂角:

  我們把兩條直線(xiàn)相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且角的兩邊互為反向延長(zhǎng)線(xiàn)的兩個(gè)角叫做對(duì)頂角。

  對(duì)頂角的性質(zhì):對(duì)頂角相等。

  三、同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角:

  直線(xiàn)AB,CD與EF相交(或者說(shuō)兩條直線(xiàn)AB,CD被第三條直線(xiàn)EF所截),構(gòu)成八個(gè)角。其中1與5這兩個(gè)角分別在AB,CD的上方,并且在EF的同側(cè),像這樣位置相同的一對(duì)角叫做同位角;3與5這兩個(gè)角都在AB,CD之間,并且在EF的異側(cè),像這樣位置的兩個(gè)角叫做內(nèi)錯(cuò)角;3與6在直線(xiàn)AB,CD之間,并側(cè)在EF的同側(cè),像這樣位置的兩個(gè)角叫做同旁?xún)?nèi)角。

  四、平行線(xiàn)的判定:

  1、兩條直線(xiàn)被第三條直線(xiàn)所截,如果同位角相等,那么兩直線(xiàn)平行。簡(jiǎn)稱(chēng):同位角相等,兩直線(xiàn)平行。

  2、兩條直線(xiàn)被第三條直線(xiàn)所截,如果內(nèi)錯(cuò)角相等,那么兩直線(xiàn)平行。簡(jiǎn)稱(chēng):內(nèi)錯(cuò)角相等,兩直線(xiàn)平行。

  3、兩條直線(xiàn)被第三條直線(xiàn)所截,如果同旁?xún)?nèi)角互補(bǔ),那么兩直線(xiàn)平行。簡(jiǎn)稱(chēng):同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行。

  補(bǔ)充平行線(xiàn)的判定方法:

  (1)平行于同一條直線(xiàn)的兩直線(xiàn)平行。

  (2)在同一平面內(nèi),垂直于同一條直線(xiàn)的兩直線(xiàn)平行。

  (3)平行線(xiàn)的定義。

  五、平行線(xiàn)的性質(zhì):

  (1)兩直線(xiàn)平行,同位角相等。

  (2)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等。

  (3)兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)。

  六、尺規(guī)作圖:

  1、作一條線(xiàn)段等于已知線(xiàn)段。

  2、作一個(gè)角等于已知角。

數(shù)學(xué)第二章知識(shí)點(diǎn)10

  一、實(shí)數(shù)的概念及分類(lèi)

  1、實(shí)數(shù)的分類(lèi)

  一是分類(lèi)是:正數(shù)、負(fù)數(shù)、0;

  另一種分類(lèi)是:有理數(shù)、無(wú)理數(shù)

  將兩種分類(lèi)進(jìn)行組合:負(fù)有理數(shù),負(fù)無(wú)理數(shù),0,正有理數(shù),正無(wú)理數(shù)

  2、無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù)。

  在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)之,歸納起來(lái)有四類(lèi):

  (1)開(kāi)方開(kāi)不盡的數(shù),如等;

  (2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;

  (3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;

  (4)某些三角函數(shù)值,如sin60o等

  二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值

  1、相反數(shù)

  實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

  2、絕對(duì)值

  在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值。(|a|≥0)。零的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

  3、倒數(shù)

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)。

  4、數(shù)軸

  規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸(畫(huà)數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

  解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。

數(shù)學(xué)第二章知識(shí)點(diǎn)11

  一、目標(biāo)與要求

  1.理解對(duì)頂角和鄰補(bǔ)角的概念,能在圖形中辨認(rèn);

  2.掌握對(duì)頂角相等的性質(zhì)和它的推證過(guò)程;

  3.通過(guò)在圖形中辨認(rèn)對(duì)頂角和鄰補(bǔ)角,培養(yǎng)學(xué)生的識(shí)圖能力。

  二、重點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;

  兩條直線(xiàn)互相垂直的概念、性質(zhì)和畫(huà)法;

  同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角的概念與識(shí)別。

  三、難點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;

  對(duì)點(diǎn)到直線(xiàn)的距離的概念的理解;

  對(duì)平行線(xiàn)本質(zhì)屬性的理解,用幾何語(yǔ)言描述圖形的性質(zhì);

  能區(qū)分平行線(xiàn)的性質(zhì)和判定,平行線(xiàn)的性質(zhì)與判定的混合應(yīng)用。

  四、知識(shí)點(diǎn)、概念總結(jié)

  1.鄰補(bǔ)角:兩條直線(xiàn)相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

  2.對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(zhǎng)線(xiàn),像這樣的兩個(gè)角互為對(duì)頂角。

  4.垂直:兩條直線(xiàn)、兩個(gè)平面相交,或一條直線(xiàn)與一個(gè)平面相交,如果交角成直角,叫做互相垂直。

  5.垂線(xiàn):兩條直線(xiàn)相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線(xiàn)。

  6.垂足:如果兩直線(xiàn)的夾角為直角,那么就說(shuō)這兩條直線(xiàn)互相垂直,它們的交點(diǎn)叫做垂足。

  7.垂線(xiàn)性質(zhì)

  (1)在同一平面內(nèi),過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。

  (2)連接直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)的所有線(xiàn)段中,垂線(xiàn)段最短。簡(jiǎn)單說(shuō)成:垂線(xiàn)段最短。

  (3)點(diǎn)到直線(xiàn)的距離:直線(xiàn)外一點(diǎn)到這條直線(xiàn)的垂線(xiàn)段的長(zhǎng)度,叫做點(diǎn)到直線(xiàn)的距離。

數(shù)學(xué)第二章知識(shí)點(diǎn)12

  1、數(shù)列概念

 、贁(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個(gè)定義域?yàn)檎麛?shù)集Nx或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。

  ②用函數(shù)的觀(guān)點(diǎn)認(rèn)識(shí)數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a、列表法;b、圖像法;c、解析法。其中解析法包括以通項(xiàng)公式給出數(shù)列和以遞推公式給出數(shù)列。

 、酆瘮(shù)不一定有解析式,同樣數(shù)列也并非都有通項(xiàng)公式。

  等差數(shù)列

  1、等差數(shù)列通項(xiàng)公式

  an=a1+(n—1)d

  n=1時(shí)a1=S1

  n≥2時(shí)an=Sn—Sn—1

  an=kn+b(k,b為常數(shù))推導(dǎo)過(guò)程:an=dn+a1—d令d=k,a1—d=b則得到an=kn+b

  2、等差中項(xiàng)

  由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱(chēng)最簡(jiǎn)單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。

  有關(guān)系:A=(a+b)÷2

  3、前n項(xiàng)和

  倒序相加法推導(dǎo)前n項(xiàng)和公式:

  Sn=a1+a2+a3+·····+an

  =a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①

  Sn=an+an—1+an—2+······+a1

  =an+(an—d)+(an—2d)+······+[an—(n—1)d]②

  由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)

  ∴Sn=n(a1+an)÷2

  等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:

  Sn=n(a1+an)÷2=na1+n(n—1)d÷2

  Sn=dn2÷2+n(a1—d÷2)

  亦可得

  a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n

  an=2sn÷n—a1

  有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1

  4、等差數(shù)列性質(zhì)

  一、任意兩項(xiàng)am,an的關(guān)系為:

  an=am+(n—m)d

  它可以看作等差數(shù)列廣義的通項(xiàng)公式。

  二、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:

  a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈Nx

  三、若m,n,p,q∈Nx,且m+n=p+q,則有am+an=ap+aq

  四、對(duì)任意的k∈Nx,有

  Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差數(shù)列。

  等比數(shù)列

  1、等比中項(xiàng)

  如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。

  有關(guān)系:

  注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2、等比數(shù)列通項(xiàng)公式

  an=a1xq’(n—1)(其中首項(xiàng)是a1,公比是q)

  an=Sn—S(n—1)(n≥2)

  前n項(xiàng)和

  當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

  Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)

  當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

  Sn=na1

  3、等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系

  an=a1=s1(n=1)

  an=sn—s(n—1)(n≥2)

  4、等比數(shù)列性質(zhì)

 。1)若m、n、p、q∈Nx,且m+n=p+q,則am·an=ap·aq;

 。2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

 。3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}

  (4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。

  記πn=a1·a2…an,則有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1

  另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

 。5)等比數(shù)列前n項(xiàng)之和Sn=a1(1—q’n)/(1—q)

 。6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n—m)

 。7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  數(shù)學(xué)三角形斜邊計(jì)算公式

  斜邊是指直角三角形中最長(zhǎng)的那條邊,也指不是構(gòu)成直角的那條邊。在勾股定理中,斜邊稱(chēng)作“弦”。

  三角形斜邊長(zhǎng)等于根號(hào)下兩直角邊的平方和,即斜邊c=√(a^2+b^2)

  解答過(guò)程如下:

 。1)在直角三角形中滿(mǎn)足勾股定理—在平面上的一個(gè)直角三角形中,兩個(gè)直角邊邊長(zhǎng)的平方加起來(lái)等于斜邊長(zhǎng)的平方。數(shù)學(xué)表達(dá)式:a2+b2=c2

  (2)a2+b2=c2求c,因?yàn)閏是一條邊,所以就是求大于0的一個(gè)根。即c=√(a2+b2)。

  在幾何中,斜邊是直角三角形的最長(zhǎng)邊,與直角相對(duì)。直角三角形的斜邊的長(zhǎng)度可以使用畢達(dá)哥拉斯定理找到,該定理表示斜邊長(zhǎng)度的平方等于另外兩邊長(zhǎng)度的平方和。例如,如果其中一方的長(zhǎng)度為3(平方,9),另一方的長(zhǎng)度為4(平方,16),那么它們的正方形加起來(lái)為25。斜邊的長(zhǎng)度為平方根25,即5。

  提高數(shù)學(xué)成績(jī)的竅門(mén)是什么

  找漏洞

  學(xué)生如何找自己學(xué)科上的漏洞呢?主要就是要在預(yù)習(xí)時(shí)找漏洞。上課學(xué)生的學(xué)習(xí)目標(biāo)明確,注意力才會(huì)集中,聽(tīng)課效率才會(huì)高。除了預(yù)習(xí),做題也是一種很好的找漏洞的方式。

  多做題不等于提高分?jǐn)?shù),只有多補(bǔ)漏洞,才能提高分?jǐn)?shù)

  題目千千萬(wàn),我們是做不完的。做題的是為了掌握、鞏固知識(shí)點(diǎn),如果已經(jīng)掌握了,就沒(méi)有必要再做了。學(xué)生應(yīng)該把時(shí)間放在補(bǔ)漏洞上,預(yù)習(xí)也要引起高度重視。

  不要輕易放過(guò)一道錯(cuò)題

  對(duì)于學(xué)生錯(cuò)誤的習(xí)題,教師會(huì)講評(píng)一遍,學(xué)生更正一遍之后就了事,但這種態(tài)度是不正確的。從哪里倒下就在哪里爬起來(lái),“錯(cuò)題是個(gè)寶,天天少不了,每天都在找,積累為大考!边@就要求學(xué)生反思三點(diǎn),一、問(wèn)題到底出在哪里?二、產(chǎn)生錯(cuò)誤的根本是什么?三、如何做才能避免下次犯同樣的錯(cuò)誤?如果每道錯(cuò)題都利用好的,還怕成績(jī)不能提高嗎?

  落實(shí)的關(guān)鍵是檢測(cè)和重復(fù)

  落實(shí)就是硬道理?醋约貉a(bǔ)漏洞的效果如何最好的方式就是檢測(cè),多次檢測(cè)沒(méi)有問(wèn)題了,那么這個(gè)漏洞就不上了。補(bǔ)漏洞也不是一次、兩次就能解決,需要一定的重復(fù)。

  既要“亡羊補(bǔ)牢”,更要“未雨綢繆”

  考試后,教師逐題分析錯(cuò)題、失分原因——找漏洞;制定切實(shí)有效的改進(jìn)措施——想辦法;有針對(duì)性地加強(qiáng)專(zhuān)項(xiàng)訓(xùn)練——補(bǔ)漏洞。有時(shí)“亡羊補(bǔ)牢”已經(jīng)晚了,我們更應(yīng)該“未雨綢繆”。每天把學(xué)習(xí)上的問(wèn)題記錄下來(lái)并解決落實(shí)好?记暗哪M測(cè)試,也是一個(gè)好辦法。

數(shù)學(xué)第二章知識(shí)點(diǎn)13

  簡(jiǎn)單隨機(jī)抽樣

  1.總體和樣本

  在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.把每個(gè)研究對(duì)象叫做個(gè)體.把總體中個(gè)體的總數(shù)叫做總體容量.為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數(shù)稱(chēng)為樣本容量.

  2.簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類(lèi)、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

  3.簡(jiǎn)單隨機(jī)抽樣常用的方法:

  (1)抽簽法;⑵隨機(jī)數(shù)表法;⑶計(jì)算機(jī)模擬法;⑷使用統(tǒng)計(jì)軟件直接抽取。

  在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

  4.抽簽法:

  (1)給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);

  (2)準(zhǔn)備抽簽的工具,實(shí)施抽簽

  (3)對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查

  例:請(qǐng)調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。

  5.隨機(jī)數(shù)表法:

  例:利用隨機(jī)數(shù)表在所在的班級(jí)中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。

  系統(tǒng)抽樣

  1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):

  把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡(jiǎn)單隨機(jī)抽樣的辦法抽取。

  K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)

  前提條件:總體中個(gè)體的排列對(duì)于研究的變量來(lái)說(shuō),應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布?梢栽谡{(diào)查允許的條件下,從不同的樣本開(kāi)始抽樣,對(duì)比幾次樣本的特點(diǎn)。如果有明顯差別,說(shuō)明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。

  2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘?duì)抽樣框的要求較低,實(shí)施也比較簡(jiǎn)單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話(huà),使用系統(tǒng)抽樣可以大大提高估計(jì)精度。

  分層抽樣

  1.分層抽樣(類(lèi)型抽樣):

  先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類(lèi)型或?qū)哟,然后再在各個(gè)類(lèi)型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本。

  兩種方法:

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標(biāo)準(zhǔn):

  (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

  (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  3.分層的比例問(wèn)題:

  (1)按比例分層抽樣:根據(jù)各種類(lèi)型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來(lái)抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

  用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征

  1、本均值:

  2、樣本標(biāo)準(zhǔn)差:

  3.用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。

  雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。

  4.(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變

  (2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉?lái)的k倍

  (3)一組數(shù)據(jù)中的最大值和最小值對(duì)標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;

  “去掉一個(gè)最高分,去掉一個(gè)最低分”中的科學(xué)道理

  兩個(gè)變量的線(xiàn)性相關(guān)

  1、概念:

  (1)回歸直線(xiàn)方程

  (2)回歸系數(shù)

  2.最小二乘法

  3.直線(xiàn)回歸方程的應(yīng)用

  (1)描述兩變量之間的依存關(guān)系;利用直線(xiàn)回歸方程即可定量描述兩個(gè)變量間依存的數(shù)量關(guān)系

  (2)利用回歸方程進(jìn)行預(yù)測(cè);把預(yù)報(bào)因子(即自變量x)代入回歸方程對(duì)預(yù)報(bào)量(即因變量Y)進(jìn)行估計(jì),即可得到個(gè)體Y值的容許區(qū)間。

  (3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定Y值的變化,通過(guò)控制x的范圍來(lái)實(shí)現(xiàn)統(tǒng)計(jì)控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車(chē)流量間的回歸方程,即可通過(guò)控制汽車(chē)流量來(lái)控制空氣中NO2的濃度。

  4.應(yīng)用直線(xiàn)回歸的注意事項(xiàng)

  (1)做回歸分析要有實(shí)際意義;

  (2)回歸分析前,最好先作出散點(diǎn)圖;

  (3)回歸直線(xiàn)不要外延。

  數(shù)學(xué)集合知識(shí)點(diǎn)

  集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專(zhuān)門(mén)研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年—1918年,德國(guó)數(shù)學(xué)家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

  集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過(guò)直觀(guān)、公理的方法來(lái)下“定義”。

  集合是把人們的直觀(guān)的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱(chēng)為單體),這一整體就是集合。組成一集合的那些對(duì)象稱(chēng)為這一集合的元素(或簡(jiǎn)稱(chēng)為元)。

  集合與集合之間的關(guān)系

  某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱(chēng)作是B的子集,寫(xiě)作A B。若A是B的子集,且A不等于B,則A稱(chēng)作是B的真子集,一般寫(xiě)作A屬于B。中學(xué)教材課本里將符號(hào)下加了一個(gè)不等于符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)

  數(shù)學(xué)的學(xué)習(xí)方法

  逐步形成“以我為主”的學(xué)習(xí)模式數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動(dòng)地參與學(xué)習(xí)過(guò)程,養(yǎng)成實(shí)事求是的科學(xué)態(tài)度,獨(dú)立思考、勇于探索的創(chuàng)新精神。

  記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補(bǔ)上。

數(shù)學(xué)第二章知識(shí)點(diǎn)14

  一、排列組合與二項(xiàng)式定理知識(shí)點(diǎn)

  1.計(jì)數(shù)原理知識(shí)點(diǎn)

  ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分類(lèi))

  2. 排列(有序)與組合(無(wú)序)

  Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!

  Cnm = n!/(n-m)!m!

  Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k!

  3.排列組合混合題的解題原則:先選后排,先分再排

  排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿(mǎn)足特殊元素的要求,再考慮其他元素. 以位置為主考慮,即先滿(mǎn)足特殊位置的要求,再考慮其他位置.

  捆綁法(集團(tuán)元素法,把某些必須在一起的元素視為一個(gè)整體考慮)

  插空法(解決相間問(wèn)題) 間接法和去雜法等等

  在求解排列與組合應(yīng)用問(wèn)題時(shí),應(yīng)注意:

  (1)把具體問(wèn)題轉(zhuǎn)化或歸結(jié)為排列或組合問(wèn)題;

  (2)通過(guò)分析確定運(yùn)用分類(lèi)計(jì)數(shù)原理還是分步計(jì)數(shù)原理;

  (3)分析題目條件,避免“選取”時(shí)重復(fù)和遺漏;

  (4)列出式子計(jì)算和作答.

  經(jīng)常運(yùn)用的數(shù)學(xué)思想是:

 、俜诸(lèi)討論思想;②轉(zhuǎn)化思想;③對(duì)稱(chēng)思想.

  4.二項(xiàng)式定理知識(shí)點(diǎn):

 、(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn

  特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

  ②主要性質(zhì)和主要結(jié)論:對(duì)稱(chēng)性Cnm=Cnn-m

  最大二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))

  所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n

  奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和

  Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1

 、弁(xiàng)為第r+1項(xiàng): Tr+1= Cnran-rbr 作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問(wèn)題。

  5.二項(xiàng)式定理的應(yīng)用:解決有關(guān)近似計(jì)算、整除問(wèn)題,運(yùn)用二項(xiàng)展開(kāi)式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。

  6.注意二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)(字母項(xiàng)的系數(shù),指定項(xiàng)的系數(shù)等,指運(yùn)算結(jié)果的系數(shù))的區(qū)別,在求某幾項(xiàng)的系數(shù)的和時(shí)注意賦值法的應(yīng)用。

  等差、等比數(shù)列的結(jié)論

  1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數(shù)列。

  2、等差數(shù)列{an}中,若m+n=p+q,則 am+an=ap+aq

  3、等比數(shù)列{an}中,若m+n=p+q,則am·an=ap·aq

  4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數(shù)列。

  5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

  6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列

  7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。

  8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。

  9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

  10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

  數(shù)列基本公式:

  1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an= S1(n-1)或Sn-Sn-1(n>2或n=2)

  2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。

  3、等差數(shù)列的前n項(xiàng)和公式:Sn=na1+[n(n-1)/2]d

  Sn=n(a1+a2)/2

  Sn=nan-[n(n-1)/2]d

  當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。

  4、等比數(shù)列的通項(xiàng)公式: an= a1 qn-1 an= ak qn-k(其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)

  二、數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)

  1.終邊與終邊相同(的終邊在終邊所在射線(xiàn)上).

  2.弧長(zhǎng)公式:,扇形面積公式:1弧度(1rad).

  3.三角函數(shù)符號(hào)特征是:一是全正、二正弦正、三是切正、四余弦正.

  4.三角函數(shù)線(xiàn)的特征是:正弦線(xiàn)“站在軸上(起點(diǎn)在 軸上)”、余弦線(xiàn)“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線(xiàn)“站在點(diǎn) 處(起點(diǎn)是 )”.務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點(diǎn)的坐標(biāo)之間的關(guān)系,‘正弦’‘縱坐標(biāo)’、‘余弦’‘橫坐標(biāo)’、‘正切’‘縱坐標(biāo)除以橫坐標(biāo)之商’”;務(wù)必記。?jiǎn)挝粓A中角終邊的變化與值的大小變化的關(guān)系為銳角

  5.三角函數(shù)同角關(guān)系中,平方關(guān)系的運(yùn)用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號(hào)”;

  6.三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號(hào)看象限.

  7.三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換.

  8.三角函數(shù)性質(zhì)、圖像及其變換:

  (1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性

  注意:正切函數(shù)、余切函數(shù)的定義域;絕對(duì)值對(duì)三角函數(shù)周期性的影響:一般說(shuō)來(lái),某一周期函數(shù)解析式加絕對(duì)值或平方,其周期性是:弦減半、切不變.既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對(duì)值,其周期性不變;其他不定.如 的周期都是,但的周期為,y=|tanx|的周期不變,問(wèn)函數(shù)y=cos|x|,,y=cos|x|是周期函數(shù)嗎?

  (2)三角函數(shù)圖像及其幾何性質(zhì):

  (3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換.

  (4)三角函數(shù)圖像的作法:三角函數(shù)線(xiàn)法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法.

  9.三角形中的三角函數(shù):

  (1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余.銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方.

  (2)正弦定理:(R為三角形外接圓的半徑).

  (3)余弦定理:常選用余弦定理鑒定三角形的類(lèi)型.

數(shù)學(xué)第二章知識(shí)點(diǎn)15

  方程的根與函數(shù)的零點(diǎn)

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).

  3、函數(shù)零點(diǎn)的求法:

  (1)(代數(shù)法)求方程的實(shí)數(shù)根;

  (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

  4、二次函數(shù)的零點(diǎn):

  (1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

  (2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  兩個(gè)平面的位置關(guān)系:

  (1)兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)

  (2)兩個(gè)平面的位置關(guān)系:

  兩個(gè)平面平行-----沒(méi)有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線(xiàn)。

  a、平行

  兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

  兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線(xiàn)平行。

  b、相交

  二面角

  (1)半平面:平面內(nèi)的一條直線(xiàn)把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

  (2)二面角:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

  (3)二面角的棱:這一條直線(xiàn)叫做二面角的棱。

  (4)二面角的面:這兩個(gè)半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  esp.兩平面垂直

  兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥

  兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直

  兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。

  (3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

  學(xué)好數(shù)學(xué)的方法

  抓學(xué)習(xí)節(jié)奏

  數(shù)學(xué)課沒(méi)有一定的速度是無(wú)效學(xué)習(xí),慢騰騰的學(xué)習(xí)是訓(xùn)練不出思維速度,訓(xùn)練不出思維的敏捷性,是培養(yǎng)不出數(shù)學(xué)能力的,這就要求在數(shù)學(xué)學(xué)習(xí)中一定要有節(jié)奏,這樣久而久之,思維的敏捷性和數(shù)學(xué)能力會(huì)逐步提高。

  整理數(shù)學(xué)筆記

  準(zhǔn)備一本筆記本,把一些重要的公式,基本內(nèi)容記錄下來(lái)。不要以為數(shù)學(xué)只要一直刷題就可以了。連公式都記不住,再怎么刷也是無(wú)用的,效率不高,事倍功半!所以要把知識(shí)點(diǎn)記錄下來(lái),在配上典型例題,就可以熟記知識(shí)點(diǎn),還加強(qiáng)運(yùn)用,提高效率。

  集合的定義

  集合是指具有某種特定性質(zhì)的具體的或抽象的對(duì)象匯總而成的集體。其中,構(gòu)成集合的這些對(duì)象則稱(chēng)為該集合的元素。

  例如,全中國(guó)人的集合,它的元素就是每一個(gè)中國(guó)人。通常用大寫(xiě)字母如A,B,S,T……表示集合,而用小寫(xiě)字母如a,b,x,y……表示集合的元素。若x是集合S的元素,則稱(chēng)x屬于S,記為x∈S。若y不是集合S的元素,則稱(chēng)y不屬于S,記為y?S。

【數(shù)學(xué)第二章知識(shí)點(diǎn)】相關(guān)文章:

數(shù)學(xué)必修三第二章知識(shí)點(diǎn)11-16

數(shù)學(xué)必修二第二章知識(shí)點(diǎn)11-20

必修四數(shù)學(xué)第二章知識(shí)點(diǎn)01-05

必修五數(shù)學(xué)第二章知識(shí)點(diǎn)10-18

數(shù)學(xué)必修四第二章公式知識(shí)點(diǎn)09-21

高二數(shù)學(xué)人教版第二章的知識(shí)點(diǎn)06-09

人教版必修三數(shù)學(xué)知識(shí)點(diǎn)第二章11-16

數(shù)學(xué)必修四第二章平面向量知識(shí)點(diǎn)10-21

初一下冊(cè)數(shù)學(xué)第二章知識(shí)點(diǎn)07-23

關(guān)于初二上冊(cè)數(shù)學(xué)第二章的知識(shí)點(diǎn)07-23