- 相關(guān)推薦
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納
在平凡的學(xué)習(xí)生活中,是不是聽到知識(shí)點(diǎn),就立刻清醒了?知識(shí)點(diǎn)就是學(xué)習(xí)的重點(diǎn)。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?以下是小編為大家收集的初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納,供大家參考借鑒,希望可以幫助到有需要的朋友。
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 1
1、必然事件、不可能事件、隨機(jī)事件的區(qū)別
2、概率一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p就叫做事件A的概率(probability), 記作P(A)=p.
注意:(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映。
(2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計(jì)得到事件發(fā)生的概率,但二者不能簡單地等同。
3、求概率的方法
(1)用列舉法求概率(列表法、畫樹形圖法)
(2)用頻率估計(jì)概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來估計(jì)事件發(fā)生的概率。另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)(事件發(fā)生的概率)附近,說明概率是個(gè)定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同.
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 2
1、數(shù)的分類及概念數(shù)系表:
說明:分類的原則:
1)相稱(不重、不漏);
2)有標(biāo)準(zhǔn)。
2、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3、倒數(shù):①定義及表示法
②性質(zhì):A.a1/a(a1);B.1/a中,aC.0
4、相反數(shù):①定義及表示法
②性質(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5、數(shù)軸:①定義(三要素)
②作用:A.直觀地比較實(shí)數(shù)的大。籅.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6、奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7、絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
、讴│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 3
1、概念:
把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角.
旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角
2、旋轉(zhuǎn)的性質(zhì):
(1)旋轉(zhuǎn)前后的兩個(gè)圖形是全等形;
(2)兩個(gè)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等
(3)兩個(gè)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角
3、中心對(duì)稱:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心.
這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn).
4、中心對(duì)稱的性質(zhì):
(1)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過對(duì)稱中心,而且被對(duì)稱中心所平分.
(2)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形.
5、中心對(duì)稱圖形:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心.
6、坐標(biāo)系中的中心對(duì)稱
兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)符號(hào)相反,
即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)P(-x,-y)。
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 4
鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。
對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長線,像這樣的兩個(gè)角互為對(duì)頂角。
垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。
內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。
同旁內(nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁內(nèi)角。
命題:判斷一件事情的語句叫命題。
平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡稱平移。
對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 5
1、絕對(duì)值
一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對(duì)值時(shí)它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
(1)一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.即:﹝另有兩種寫法﹞
(2)實(shí)數(shù)的絕對(duì)值是一個(gè)非負(fù)數(shù),從數(shù)軸上看,一個(gè)實(shí)數(shù)的絕對(duì)值就是數(shù)軸上表示這個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離.
(3)幾個(gè)非負(fù)數(shù)的和等于零則每個(gè)非負(fù)數(shù)都等于零。
注意:│a│≥0,符號(hào)"││"是"非負(fù)數(shù)"的標(biāo)志;數(shù)a的絕對(duì)值只有一個(gè);處理任何類型的題目,只要其中有"││"出現(xiàn),其關(guān)鍵一步是去掉"││"符號(hào)。
2、解一元二次方程
解一元二次方程的基本思想方法是通過“降次”將它化為兩個(gè)一元一次方程。
(1)直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).
直接開平方法就是平方的逆運(yùn)算.通常用根號(hào)表示其運(yùn)算結(jié)果.
(2)配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。
1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2)系數(shù)化1:將二次項(xiàng)系數(shù)化為1
3)移項(xiàng):將常數(shù)項(xiàng)移到等號(hào)右側(cè)
4)配方:等號(hào)左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方
5)變形:將等號(hào)左邊的代數(shù)式寫成完全平方形式
6)開方:左右同時(shí)開平方
7)求解:整理即可得到原方程的根
(3)公式法
公式法:把一元二次方程化成一般形式,然后計(jì)算判別式△=b2-4ac的值,當(dāng)b2-4ac≥0時(shí),把各項(xiàng)系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
3、圓的必考知識(shí)點(diǎn)
(1)圓
在一個(gè)平面內(nèi),一動(dòng)點(diǎn)以一定點(diǎn)為中心,以一定長度為距離旋轉(zhuǎn)一周所形成的封閉曲線叫做圓。圓有無數(shù)條對(duì)稱軸。
(2)圓的相關(guān)特點(diǎn)
1)徑
連接圓心和圓上的任意一點(diǎn)的線段叫做半徑,字母表示為r
通過圓心并且兩端都在圓上的線段叫做直徑,字母表示為d
直徑所在的直線是圓的對(duì)稱軸。在同一個(gè)圓中,圓的直徑d=2r
2)弦
連接圓上任意兩點(diǎn)的線段叫做弦.在同一個(gè)圓內(nèi)最長的弦是直徑。直徑所在的直線是圓的對(duì)稱軸,因此,圓的對(duì)稱軸有無數(shù)條。
3)弧
圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧,以“⌒”表示。
大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,所以半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧一般用三個(gè)字母表示,劣弧一般用兩個(gè)字母表示。優(yōu)弧是所對(duì)圓心角大于180度的弧,劣弧是所對(duì)圓心角小于180度的弧。
在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。
4)角
頂點(diǎn)在圓心上的角叫做圓心角。
頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。圓周角等于相同弧所對(duì)的圓心角的一半。
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 6
1.軸對(duì)稱:
把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn),對(duì)應(yīng)線段叫做對(duì)稱線段。
2.軸對(duì)稱圖形:
如果一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸。
注意:對(duì)稱軸是直線而不是線段
3.軸對(duì)稱的性質(zhì):
(1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形;
(2)如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線;
(3)兩個(gè)圖形關(guān)于某條直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上;
(4)如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
4.線段垂直平分線:
(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
(2)性質(zhì):①線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;
、诘揭粭l線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
5.角的平分線:
(1)定義:把一個(gè)角分成兩個(gè)相等的角的射線叫做角的平分線.
(2)性質(zhì):①在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.
、诘揭粋(gè)角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上.
注意:根據(jù)角平分線的性質(zhì),三角形的三個(gè)內(nèi)角的平分線交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等.
6.等腰三角形的性質(zhì)與判定:
性質(zhì):
(1)對(duì)稱性:等腰三角形是軸對(duì)稱圖形,等腰三角形底邊上的中線所在的直線是它的對(duì)稱軸,或底邊上的高所在的直線是它的對(duì)稱軸,或頂角的平分線所在的直線是它的對(duì)稱軸;
(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對(duì)等角:等腰三角形的兩個(gè)底角相等。
說明:等腰三角形的性質(zhì)除三線合一外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:①等腰三角形兩底角的平分線相等;②等腰三角形兩腰上的中線相等;
、鄣妊切蝺裳系母呦嗟龋虎艿妊切蔚走吷系闹悬c(diǎn)到兩腰的距離相等。
判定定理:如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡稱:等角對(duì)等邊)。
7.等邊三角形的性質(zhì)與判定:
性質(zhì):(1)等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于60
(2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有三線合一。因此等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸,而等腰三角形(非等邊三角形)只有一條對(duì)稱軸。
判定定理:有一個(gè)角是60的等腰三角形是等邊三角形。
說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 7
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a0時(shí),拋物線向上開口;當(dāng)a0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab0),對(duì)稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
=b^2-4ac0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
=b^2-4ac0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-bb^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 8
一、二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
(1)若這個(gè)條件不成立,則不是二次根式。
。2)是一個(gè)重要的非負(fù)數(shù),即;≥0。
2、積的算術(shù)平方根:積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積。
3、二次根式比較大小的方法:
。1)利用近似值比大小。
。2)把二次根式的系數(shù)移入二次根號(hào)內(nèi),然后比大小。
。3)分別平方,然后比大小。
4、商的算術(shù)平方根:商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
5、二次根式的除法法則:
。1)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
6、最簡二次根式:
。1)滿足下列兩個(gè)條件的二次根式,叫做最簡二次根式。
、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式。
、诒婚_方數(shù)中不含能開的盡的因數(shù)或因式。
。2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母。
(3)化簡二次根式時(shí),往往需要把被開方數(shù)先分解因數(shù)或分解因式。
(4)二次根式計(jì)算的最后結(jié)果必須化為最簡二次根式。
7、同類二次根式:幾個(gè)二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式。
8、二次根式的混合運(yùn)算:
。1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用。
(2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡,例如:化為同類二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。
二、一元二次方程
1、一元二次方程的一般形式:a≠0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時(shí),多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用,其中直接開平方法雖然簡單,但是適用范圍較小;公式法雖然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯(cuò)誤;因式分解法適用范圍較大,且計(jì)算簡便,是首選方法;配方法使用較少。
3、一元二次方程根的判別式:當(dāng)ax2+bx+c=0(a≠0)時(shí),Δ=b2—4ac叫一元二次方程根的判別式。請(qǐng)注意以下等價(jià)命題:
Δ>0 <=>有兩個(gè)不等的實(shí)根;Δ=0 <=>有兩個(gè)相等的實(shí)根;Δ<0 <=>無實(shí)根。
4、平均增長率問題——應(yīng)用題的類型題之一(設(shè)增長率為x):
。1)第一年為a,第二年為a(1+x),第三年為a(1+x)2。
。2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 9
一、求復(fù)雜事件的概率:
1.有些隨機(jī)事件不可能用樹狀圖和列表法求其發(fā)生的概率,只能用試驗(yàn)、統(tǒng)計(jì)的方法估計(jì)其發(fā)生的概率。
2.對(duì)于作何一個(gè)隨機(jī)事件都有一個(gè)固定的概率客觀存在。
3.對(duì)隨機(jī)事件做大量試驗(yàn)時(shí),根據(jù)重復(fù)試驗(yàn)的特征,我們確定概率時(shí)應(yīng)當(dāng)注意幾點(diǎn):
(1)盡量經(jīng)歷反復(fù)實(shí)驗(yàn)的過程,不能想當(dāng)然的作出判斷;
(2)做實(shí)驗(yàn)時(shí)應(yīng)當(dāng)在相同條件下進(jìn)行;
(3)實(shí)驗(yàn)的次數(shù)要足夠多,不能太少;
(4)把每一次實(shí)驗(yàn)的結(jié)果準(zhǔn)確,實(shí)時(shí)的做好記錄;
(5)分階段分別從第一次起計(jì)算,事件發(fā)生的頻率,并把這些頻率用折線統(tǒng)計(jì)圖直觀的表示出來;
(6)觀察分析統(tǒng)計(jì)圖,找出頻率變化的逐漸穩(wěn)定值,并用這個(gè)穩(wěn)定值 估計(jì)事件發(fā)生的概率,這種估計(jì)概率的方法的優(yōu)點(diǎn)是直觀,缺點(diǎn)是估計(jì)值必須在實(shí)驗(yàn)后才能得到,無法事件預(yù)測。
二、判斷游戲公平:
游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。
三、概率綜合運(yùn)用:
概率可以和很多知識(shí)綜合命題,主要涉及平面圖形、統(tǒng)計(jì)圖、平均數(shù)、中位數(shù)、眾數(shù)、函數(shù)等。
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 10
1、圖形的相似
相似多邊形的對(duì)應(yīng)邊的比值相等,對(duì)應(yīng)角相等;
兩個(gè)多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;
相似比:相似多邊形對(duì)應(yīng)邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。
3相似三角形的周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似
位似圖形:兩個(gè)多邊形相似,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 11
銳角三角函數(shù)公式
sin α=∠α的對(duì)邊 / 斜邊
cos α=∠α的鄰邊 / 斜邊
tan α=∠α的對(duì)邊 / ∠α的鄰邊
cot α=∠α的鄰邊 / ∠α的對(duì)邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推導(dǎo)
sin3a
=sin(2a+a)
=sin2acosa+cos2asina(1)特殊角三角函數(shù)值
sin0=0
sin30=0.5
sin45=0.7071 二分之根號(hào)2
sin60=0.8660 二分之根號(hào)3
sin90=1
cos0=1
cos30=0.866025404 二分之根號(hào)3
cos45=0.707106781 二分之根號(hào)2
cos60=0.5
cos90=0
tan0=0
tan30=0.577350269 三分之根號(hào)3
tan45=1
tan60=1.732050808 根號(hào)3
tan90=無
cot0=無
cot30=1.732050808 根號(hào)3
cot45=1
cot60=0.577350269 三分之根號(hào)3
cot90=0
【初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納】相關(guān)文章:
初三數(shù)學(xué)的知識(shí)點(diǎn)歸納09-25
初三數(shù)學(xué)的知識(shí)點(diǎn)歸納04-20
初三數(shù)學(xué)知識(shí)點(diǎn)歸納12-15
初三數(shù)學(xué)旋轉(zhuǎn)知識(shí)點(diǎn)歸納06-18
初三數(shù)學(xué)知識(shí)點(diǎn)歸納07-28
初三數(shù)學(xué)的知識(shí)點(diǎn)歸納優(yōu)秀04-17
初三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)06-16