考研數(shù)學(xué)高數(shù)考點的預(yù)測
極限的計算是高等數(shù)學(xué)重點難點,我們在復(fù)習(xí)的時候,一定要抓住重點。小編為大家精心準(zhǔn)備了考研數(shù)學(xué)高數(shù)考點的預(yù)料,歡迎大家前來閱讀。
考研數(shù)學(xué)之高數(shù)考點預(yù)測:極限的計算
1、等價無窮小的轉(zhuǎn)化,(只能在乘除時候使用,但是不是說一定在加減時候不能用,前提是必須證明拆分后極限依然存在,e的X次方-1或者(1+x)的a次方-1等價于Ax等等。全部熟記(x趨近無窮的時候還原成無窮小)。
2、洛必達(dá)法則(大題目有時候會有暗示要你使用這個方法)。首先他的使用有嚴(yán)格的使用前提!必須是X趨近而不是N趨近!(所以面對數(shù)列極限時候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件(還有一點數(shù)列極限的n當(dāng)然是趨近于正無窮的,不可能是負(fù)無窮!)必須是函數(shù)的導(dǎo)數(shù)要存在!(假如告訴你g(x),沒告訴你是否可導(dǎo),直接用,無疑于找死!!)必須是0比0無窮大比無窮大!當(dāng)然還要注意分母不能為0。洛必達(dá)法則分為3種情況:0比0無窮比無窮時候直接用;0乘以無窮,無窮減去無窮(應(yīng)為無窮大于無窮小成倒數(shù)的關(guān)系)所以無窮大都寫成了無窮小的倒數(shù)形式了。通項之后這樣就能變成第一種的形式了;0的0次方,1的無窮次方,無窮的0次方。對于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對數(shù)的方法,這樣就能把冪上的函數(shù)移下來了,就是寫成0與無窮的形式了,(這就是為什么只有3種形式的原因,LNx兩端都趨近于無窮時候他的冪移下來趨近于0,當(dāng)他的冪移下來趨近于無窮的時候,LNX趨近于0)。
3、泰勒公式(含有e的x次方的時候,尤其是含有正余弦的加減的時候要特變注意!)E的x展開sina,展開cosa,展開ln1+x,對題目簡化有很好幫助。
4、面對無窮大比上無窮大形式的解決辦法,取大頭原則最大項除分子分母!!!看上去復(fù)雜,處理很簡單!
5、無窮小于有界函數(shù)的處理辦法,面對復(fù)雜函數(shù)時候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時候,一定要注意這個方法。面對非常復(fù)雜的函數(shù),可能只需要知道它的范圍結(jié)果就出來了!
6、夾逼定理(主要對付的是數(shù)列極限!)這個主要是看見極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。
7、等比等差數(shù)列公式應(yīng)用(對付數(shù)列極限)(q絕對值符號要小于1)。
8、各項的拆分相加(來消掉中間的大多數(shù))(對付的還是數(shù)列極限)可以使用待定系數(shù)法來拆分化簡函數(shù)。
9、求左右極限的方式(對付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,xn的極限與xn+1的極限時一樣的,因為極限去掉有限項目極限值不變化。
10、兩個重要極限的應(yīng)用。這兩個很重要!對第一個而言是X趨近0時候的'sinx與x比值。第2個就如果x趨近無窮大,無窮小都有對有對應(yīng)的形式(第2個實際上是用于函數(shù)是1的無窮的形式)(當(dāng)?shù)讛?shù)是1的時候要特別注意可能是用地兩個重要極限)
11、還有個方法,非常方便的方法,就是當(dāng)趨近于無窮大時候,不同函數(shù)趨近于無窮的速度是不一樣的!x的x次方快于x!快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對數(shù)函數(shù)(畫圖也能看出速率的快慢)!!當(dāng)x趨近無窮的時候,他們的比值的極限一眼就能看出來了。
12、換元法是一種技巧,不會對單一道題目而言就只需要換元,而是換元會夾雜其中。
13、假如要算的話四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的。
14、還有對付數(shù)列極限的一種方法,就是當(dāng)你面對題目實在是沒有辦法,走投無路的時候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。
15、單調(diào)有界的性質(zhì),對付遞推數(shù)列時候使用證明單調(diào)性!
16、直接使用求導(dǎo)數(shù)的定義來求極限,(一般都是x趨近于0時候,在分子上f(x加減某個值)加減f(x)的形式,看見了要特別注意)(當(dāng)題目中告訴你F(0)=0時候f(0)導(dǎo)數(shù)=0的時候,就是暗示你一定要用導(dǎo)數(shù)定義!
函數(shù)是表皮,函數(shù)的性質(zhì)也體現(xiàn)在積分微分中。例如他的奇偶性質(zhì)他的周期性。還有復(fù)合函數(shù)的性質(zhì):
1、奇偶性,奇函數(shù)關(guān)于原點對稱偶函數(shù)關(guān)于軸對稱偶函數(shù)左右2邊的圖形一樣(奇函數(shù)相加為0);
2、周期性也可用在導(dǎo)數(shù)中在定積分中也有應(yīng)用定積分中的函數(shù)是周期函數(shù)積分的周期和他的一致;
3、復(fù)合函數(shù)之間是自變量與應(yīng)變量互換的關(guān)系;
4、還有個單調(diào)性。(再求0點的時候可能用到這個性質(zhì)!(可以導(dǎo)的函數(shù)的單調(diào)性和他的導(dǎo)數(shù)正負(fù)相關(guān)):o再就是總結(jié)一下間斷點的問題(應(yīng)為一般函數(shù)都是連續(xù)的所以間斷點是對于間斷函數(shù)而言的)間斷點分為第一類和第二類剪斷點。第一類是左右極限都存在的(左右極限存在但是不等跳躍的的間斷點或者左右極限存在相等但是不等于函數(shù)在這點的值可取的間斷點;第二類間斷點是震蕩間斷點或者是無窮極端點(這也說明極限即使不存在也有可能是有界的)。
考研數(shù)學(xué)易錯點分析
高等數(shù)學(xué)
1.函數(shù)在一點處極限存在,連續(xù),可導(dǎo),可微之間關(guān)系。對于一元函數(shù)函數(shù)連續(xù)是函數(shù)極限存在的充分條件。若函數(shù)在某點連續(xù),則該函數(shù)在該點必有極限。若函數(shù)在某點不連續(xù),則該函數(shù)在該點不一定無極限。若函數(shù)在某點可導(dǎo),則函數(shù)在該點一定連續(xù)。但是如果函數(shù)不可導(dǎo),不能推出函數(shù)在該點一定不連續(xù),可導(dǎo)與可微等價。而對于二元函數(shù),只能又可微推連續(xù)和可導(dǎo)(偏導(dǎo)都存在),其余都不成立。
2.基本初等函數(shù)與初等函數(shù)的連續(xù)性:基本初等函數(shù)在其定義域內(nèi)是連續(xù)的,而初等函數(shù)在其定義區(qū)間上是連續(xù)的。
3.極值點,拐點。駐點與極值點的關(guān)系:在一元函數(shù)中,駐點可能是極值點,也可能不是極值點,而函數(shù)的極值點必是函數(shù)的駐點或?qū)?shù)不存在的點。注意極值點和拐點的定義一充、二充、和必要條件。
4.夾逼定理和用定積分定義求極限。這兩種方法都可以用來求和式極限,注意方法的選擇。還有夾逼定理的應(yīng)用,特別是無窮小量與有界量之積仍是無窮小量。
5.可導(dǎo)是對定義域內(nèi)的點而言的,處處可導(dǎo)則存在導(dǎo)函數(shù),只要一個函數(shù)在定義域內(nèi)某一點不可導(dǎo),那么就不存在導(dǎo)函數(shù),即使該函數(shù)在其它各處均可導(dǎo)。
6.泰勒中值定理的應(yīng)用,可用于計算極限以及證明。
7.比較積分的大小。定積分比較定理的應(yīng)用(常用畫圖法),多重積分的比較,特別注意第二類曲線積分,曲面積分不可直接比較大小。
8.抽象型的多元函數(shù)求導(dǎo),反函數(shù)求導(dǎo)(高階),參數(shù)方程的二階導(dǎo),以及與變限積分函數(shù)結(jié)合的求導(dǎo)
9.廣義積分和級數(shù)的斂散性的判斷。
10.介值定理和零點定理的應(yīng)用。關(guān)鍵在于觀察和變換所要證明等式的形式,構(gòu)造輔助函數(shù)。
11.保號性。極限的性質(zhì)中最重要的就是保號性,注意保號性的兩種形式以及成立的條件。
12.第二類曲線積分和第二類曲面積分。在求解的過程中一般會使用格林公式和高斯公式,大部分同學(xué)都會把精力關(guān)注在是否閉合,偏導(dǎo)是否連續(xù)上,而忘記了第三個條件——方向,要引起注意。
線性代數(shù)
1、行列式的計算。行列式直接考察的概率不高,但行列式是線代的工具,判定系數(shù)矩陣為方陣的線性方程組解的情況及特征值的計算都會用到行列式的計算,故要引起重視。
2、矩陣的變換。矩陣是線代的研究對象,線性方程組、特征值與特征向量、相似對角化,二次型,其實都是在研究矩陣。一定要注意在化階梯型時只能對矩陣做行變換,不可做列變換變換。
3、向量和秩。向量和秩比較抽象,也是線代學(xué)習(xí)的重點和難點,研究線性方程組解的情況其實就是在研究系數(shù)矩陣的秩,也是在研究把系數(shù)矩陣按列分塊得到的向量組的秩。
4、線性方程組的解。線性方程組是每年的必看知識點,要熟練掌握線性方程組解的結(jié)構(gòu)問題,核心是理解基礎(chǔ)解系,要能夠掌握具體方程組的數(shù)列方法,更要能熟練解決抽象型方程組,一般會轉(zhuǎn)化為系數(shù)矩陣的秩或者基礎(chǔ)解,然后解決問題。
5、特征值與特征向量。特征值與特征向量起到承前啟后的作用,一特征值對應(yīng)的特征向量其實就是其對應(yīng)矩陣作為系數(shù)矩陣的齊次線性方程組的基礎(chǔ)解系,其重要應(yīng)用就是相似對角化及正交相似對角化,是后面二次型的基礎(chǔ)。
6、相似對角化,包括相似對角化及正交相似對角化。要會判斷是否可以相似對角化,及正交相似對角化時,怎么施密特正交化和單位化。
7、二次型。二次型是線代的一個綜合型章節(jié),會用到前面的很多知識。要熟練掌握用正交變換化二次型為標(biāo)準(zhǔn)形,二次型正定的判定,及慣性指數(shù)。
8、矩陣等價及向量組等價的充要條件,矩陣等價,相似,合同的條件。
概率論與數(shù)理統(tǒng)計
1、非等可能 與 等可能。若一次隨機(jī)實驗中可能出現(xiàn)的結(jié)果有N個,且所有結(jié)果出現(xiàn)的可能性都相等,則每一個基本事件的概率都是1/N;若其中某個事件A包含的結(jié)果有M個,則事件A的概率為M/N。
2、互斥與對立 對立一定互斥,但互斥不一定對立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B對立,則滿足(1)A∩B=空集;(2)P(A+B)=1。
3、互斥與獨(dú)立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B獨(dú)立,則P(AB)=P(A)P(B);概率為0或者1的事件與任何事件都獨(dú)立
4、排列與組合。排列與順序有關(guān),組合與順序無關(guān),同類相乘有序,不同類相乘無序。
5、不可能事件與概率為零的隨機(jī)事件。 不可能事件的概率一定為零,但概率為零的隨機(jī)事件不一定是不可能事件,如連續(xù)型隨機(jī)變量在任何一點的概率都為0。
6、必然事件與概率為1的事件。必然事件的概率一定為1,但概率為1的隨機(jī)事件不一定是必然事件。對于一般情形,由P(A)=P(B)同樣不能推得隨機(jī)事件A等于隨機(jī)事件B。
7、條件概率。P(A|B)表示事件B發(fā)生條件下事件A發(fā)生的概率。若“B是A的子集”,則P(A|B)=1,但P(B|A)=P(B)是不對的,只有當(dāng)P(A)=1時才成立。在求二維連續(xù)型隨機(jī)變量的條件概率密度函數(shù)時,一定是在邊緣概率密度函數(shù)大于零時,才可使用“條件=聯(lián)合/邊緣”;反過來用此公式求聯(lián)合概率密度函數(shù)時,也要保證邊緣概率密度函數(shù)大于零。
8、隨機(jī)變量概率密度函數(shù)。對于一維連續(xù)型隨機(jī)變量,用分布函數(shù)法,先討論概率為0和1的區(qū)間,然后反解,再討論,最后求導(dǎo)。對于二維隨機(jī)變量,若是連續(xù)型和離散型,用全概率公式,若是連續(xù)型和連續(xù)型同樣用分布函數(shù)法,若隨機(jī)變量是Z=X+Y型,用卷積公式。
考研數(shù)學(xué)沖刺高數(shù)證明題如何求證
☆題目篇☆
考試難題一般出現(xiàn)在高等數(shù)學(xué),對高等數(shù)學(xué)一定要抓住重難點進(jìn)行復(fù)習(xí)。高等數(shù)學(xué)題目中比較困難的是證明題,在整個高等數(shù)學(xué),容易出證明題的地方如下:
▶數(shù)列極限的證明
數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。
▶微分中值定理的相關(guān)證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強(qiáng),涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質(zhì)定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結(jié)合起來進(jìn)行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。
▶方程根的問題
包括方程根唯一和方程根的個數(shù)的討論。
▶不等式的證明
▶定積分等式和不等式的證明
主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。
▶積分與路徑無關(guān)的五個等價條件
這一部分是數(shù)一的考試重點,最近幾年沒設(shè)計到,所以要重點關(guān)注。
☆方法篇☆
以上是容易出證明題的地方,同學(xué)們在復(fù)習(xí)的時候重點歸納這類題目的解法。那么,遇到這類的證明題,我們應(yīng)該用什么方法解題呢?
▶結(jié)合幾何意義記住基本原理
重要的定理主要包括零點存在定理、中值定理、泰勒公式、極限存在的兩個準(zhǔn)則等基本原理,包括條件及結(jié)論。
知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。
因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準(zhǔn)則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
▶借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。
再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
▶逆推法
從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。
在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。
【考研數(shù)學(xué)高數(shù)考點的預(yù)測】相關(guān)文章:
考研數(shù)學(xué)高數(shù)有哪些考點12-15
考研高數(shù)知識考點指南攻略11-06
考研數(shù)學(xué)高數(shù)填空題的考點解析12-04
考研向量的數(shù)學(xué)定義的考點預(yù)測12-15
考研數(shù)學(xué)高數(shù)復(fù)習(xí)的要點11-14
考研數(shù)學(xué)高數(shù)復(fù)習(xí)的技巧12-12
考研數(shù)學(xué)高數(shù)的復(fù)習(xí)重點12-21